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Abstract—Detecting transient faults in safety-critical neural
network (NN) applications operated on embedded systems has
become a concern, but it is challenging to achieve high accuracy
because of the open context problem and resource constraints.
This study proposes an accuracy-area efficient, data-analysis-
based online soft errors (SEs) and control flow errors (CFEs)
detection, applicable to any NN application with low overhead.
We insert code for runtime monitoring data assertion, and
the data are distributed to shallow or deep detection models
selectively. The shallow detection model detects CFEs by verifying
runtime signatures with values obtained from simulations, and
detects SEs of data having constant values according to program
input. SEs of other data are verified by a deep detection model
using a sliding window one-class support vector machine. Fault
injection experiments on an image classification NN showed that
our detector has significant detection accuracy in fault conditions.

Index Terms—Fault Tolerance, Embedded System, Neural
Networks, Reliability

I. INTRODUCTION

Today, the development of microcontroller (MCU) perfor-
mance and lightweight neural network (NN) models enabled
NN applications to be deployed on MCUs. Among them, some
must tolerate faults or runtime errors, i.e., are safety-critical.
For instance, vehicle steering controllers, medical diagnostics
tools, and infrastructure controllers utilize NNs in safety-
critical conditions. [1]

While there are various software runtime errors, we focus on
control flow error (CFE) and soft error (SE). CFEs are errors
when the instruction sequence is different from an error-free
environment. [2] SEs are transient bit flips in memory that
change data values on memory. Since a single SE or CFE
causes fatal outputs in safety-critical applications, it is crucial
to detect software faults immediately; thus, fault detection
schemes should be employed. Among various detection meth-
ods, we focus on a data-analysis-based model that observes the
target program’s processing values online. The data-analysis-
based model does not require complex hardware modification
and is not algorithm-specific. Therefore, it can easily be
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applied to any target program and device. [3] Meanwhile,
unlike non-NN, which process fixed inputs, NNs are given
different inputs that are of the same label. Since there are
almost infinite possible inputs for each label, we can not
formally specify all possible variable values of the application.
This characteristic of the NN application is called the open
context problem, which makes detecting faults in NNs by a
data-analysis-based model challenging.

In this study, we propose a data analysis-based, general-
purpose, off-the-shelf CFE and SE online detector with low
overhead, which satisfies the embedded system environment.
We devise a selective CFE and SE detection algorithm which
can be applied to any program without hardware modification.
We utilize a simple image classification NN or fault injection
experiments for evaluation.

II. IMPLEMENTATION
A. Code Insertion Process

To monitor the CFEs and SEs at runtime, processing basic
block index or memory values should be asserted to the
detector; therefore, a function for data assertion should be
inserted. Since user-driven code insertion is cumbersome, and
code insertion in a high-level language could lose language
portability, we developed an LLVM IR parser to insert code
at the IR produced by the LLVM frontend. For the basic block
index assertion, our tool assigns a unique index for each basic
block and asserts it at the end of every basic block. For SE
detection, because every memory is at risk of transient bit
flips, the memory value is asserted at the end of every store
instruction.

B. Detector Architecture

The proposed detector determines errors based on control
flows and memory values obtained from correct executions.
Various control flows and memory values are obtained by
performing multiple executions of the target program with
varying program input. To identify control flow, we obtain the
sequence of basic block indexes from correct executions. For
memory values, we classify them as constant or nonconstant
data if it has the same value for every simulation for each
control flow. Examples of constant data are weights and bias,
while nonconstant data are values stored in neurons. At run-
time, the basic block index and memory values are transmitted
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Fig. 1. Proposed detector architecture

to the detector and analyzed with selective detection models
(Figure 1). The basic block index and constant data are sent
to the shallow detection model, where basic block indexes
are compared with the correct control flow obtained from
the correct executions. [2] From this operation, we can get
candidates of the target program’s expected control flows. The
constant are compared with data values obtained from correct
executions that have control flow of the expected control flows.
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Fig. 2. Sliding window OCSVM model (a) Window sliding when the first
window is labeled correct and (b) erroneous

The nonconstant data vary according to program input,
so it is impossible to detect SEs for nonconstant data by
comparing them with values obtained from correct program
executions. To verify whether the asserted nonconstant data
have acceptable values compared to the correct values, our
deep detection model uses a supervised learning model trained
from correct execution data. Since the deep detection model
should detect abnormal values online with low false-positive
and false-negative rates, we developed a specific sliding win-
dow OCSVM model. The proposed sliding window scheme
changes the window size according to each window’s OCSVM
results. For instance, if the OCSVM for the first window labels
the data in the window as correct, it slides to the next window.
(Figure 2-(a)) However, if the OCSVM labels the first window
as erroneous, the window size increases. (Figure 2-(b)). If
the window size is larger than the maximum window size,
the detector labels the program execution as erroneous. We
used the OCSVM with radial basis function with scale kernel
coefficient and the optimal v selected from the F1-score look-
up table.

C. Test Program and Fault Injection

Our test program is a simple image classification application
that classifies images into a single label. The NN has 1 hidden
layer with 8 nodes. We used 5,000 MNIST images to obtain
correct execution data for shallow detection and train the deep
detection model, while 500 images were used for evaluation.
To simulate a fault situation, we processed the asserted data

from the test program through the fault injection model and
passed the data to the detector. Our fault injection model
takes error rate, number of bits to be flipped, and probability
distribution of bit flip location as parameters. [4]

III. EXPERIMENTAL RESULTS
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Fig. 3. The CDF of recall for SE detection

We performed 1.2 million experiments with 0.05% and
0.1% error rate, 1 and 2 bit flip, uniform and normal dis-
tribution with std 4 and 8. We defined false negative as failing
to detect an error of erroneous execution. [4] The shallow
detection model’s CFE detection recall and precision were
100%. Figure 3 shows the CDF of the recall for the SE
detection, where our detector’s recall reached above 99.9%
in most cases. The SE detection precision was 99.21%. The
increased target program binary file size was 14.4%.

IV. CONCLUSION AND OUTLOOK

We designed a novel data analysis-based online CFE and
SE detector for NN applications that can be applied to any
target application with low overhead. We selectively analyzed
processing data with the shallow and deep detection models.
Experiments on an image classification model verified that
our detector has significant recall and precision. We plan to
work on implementing our model on widely used MCUs; for
instance, the target program and shallow and deep detection
models can be implemented on each core of a tri-core MCU,
and the deep detection model can be handled by a callback
to a high-performance system. Additionally, we plan to work
on rollback operations, which can be performed by partial
replacements on erroneous variable values.
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