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ABSTRACT
The order in which compiler optimization passes are applied has a
significant impact on program performance. However, widely used
compiler optimization options use handpicked sets of optimization
passes, optimized for specific benchmarks. In this paper, we pro-
pose an ensemble reinforcement learning (RL) model that optimizes
LLVM transform passes sequence to reduce the runtime memory
profile, which is an important consideration in resource-constrained
embedded systems. We developed an LLVM intermediate repre-
sentation (IR) analysis pass to extract static program features. The
extracted features are processed with PCA for dimension reduction.
We also generated datasets using a random program generator,
and clustered them according to the PCA results of their extracted
features. The ensemble RL model was trained on each clustered
dataset. Experiments showed that the proposed model reduced 37%
more memory profile than the standard optimization option.

CCS CONCEPTS
• Computer systems organization→ Embedded software; •
Computing methodologies→ Reinforcement learning.
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1 INTRODUCTION
Compiler-level code optimization is a crucial but difficult task. These
optimizations are applied as transform passes sequence, while the
optimization performance depends on which transform passes are
applied in which order. To facilitate such optimizations, compiler
engineers handpicked sets of transform passes, regardless of the
target program. Therefore, a performance gap exists between the
ideally-optimized and compiler-optimized programs. To narrow
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this, recent studies use machine learning to identify the optimal
transform passes sequence for an arbitrary input program [1].

Among various optimization purposes, we focus on peak runtime
memory profile reduction, which is an important consideration
in embedded systems. To the best of our knowledge, there is no
memory profile optimization by transform passes at this point, since
the transform passes that can reduce memory usage are too sparse
compared to the entire search space.

In this paper, we present an ensemble RL model that optimizes
the transform passes sequence to reduce the runtime memory pro-
file for an input program. We developed an LLVM IR analysis pass
for extracting program features and used PCA to reduce dimensions.
We utilized a dataset derived from a random program generator
and clustered based on the PCA results. The ensemble RL model
was trained on each clustered dataset. All source codes and datasets
are made public for future studies1.

2 PROPOSED MODEL
2.1 Feature Extraction and Dataset
Feature Extraction. To represent program characteristics, pro-
gram feature 𝒇 should be extracted. We developed an LLVM IR
analysis pass that extracts 50 features, including the number of
various types of instructions and basic blocks (Fig. 1-A).
Dataset. Benchmark suites used in the literature are too simple to
reduce memory profile by applying a transform passes sequence.
This implies that generating complex, diverse datasets is crucial.
Therefore, we utilized Csmith [2] to generate diverse valid randomC
codes 𝑆 , with code sizes greater than 300kb (Fig. 1-A). The generated
code was divided into 150 training datasets and 67 test datasets.
Transform Pass Candidates. To select appropriate transform
pass candidates for the RL model action, we examined 50 LLVM
transform passes’ impact on the runtime memory profile of our
dataset. 32 transform passes 𝑇 that reduced memory profile com-
pared to the -o0 were selected. Full lists of features, datasets, and
selected transform passes are available in our code repository.

2.2 Dimension Reduction and Clustering
PCA. Although the extracted feature 𝒇 represents essential char-
acteristics of a program, its dimension is too large to be used for
the RL model. Therefore, we applied PCA, which is a widely used
feature reduction technique, that also helps model training when
there are only a small number of diverse training samples (Fig. 1-B).
In our setup, 𝒇 ∈ N50 was abstracted to 𝑃𝐶𝐴(𝒇 ) = 𝒑 ∈ R15, where
the 15 PCA components accounted for 99% of the variances.

1https://github.com/jschang0215/RL-TransformPass-Optimization
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Figure 1: The proposed model extracts the program feature, applies PCA, and feeds to the ensemble RL model.
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Figure 2: RL environment and training process.

Clustering. Building a model that can cope with a diverse dataset
is challenging. Accordingly, we clustered the training dataset into 𝑘
clusters, 𝐶1,𝐶2, ...,𝐶𝑘 , according to the PCA results of the training
dataset with the KMeans clustering. The number of clusters was
determined as 𝑘 = 4 using the Elbow method.

2.3 Ensemble RL Model
RL Environment. The goal of the RL model is to output the trans-
form passes sequence 𝒐 that best reduces memory profile, based
on the PCA result 𝒑. We defined the action space of the RL model
as 𝐴 = {𝑎 | 𝑎 ∈ 𝑇𝑛}; that is, the action 𝑎 is a 𝑛 = 12-dimensional
vector with each entry representing a transform pass in order. The
PCA result 𝒑 is considered as the state 𝑠 in the observation space.
The reward is defined as 𝑟 = (𝑚𝑠 −𝑚𝑜 )/𝑚0, where𝑚𝑠 and𝑚0 rep-
resent peak memory profile when applying the current action and
LLVM -o3, respectively (Fig. 2). For learning algorithms, we used
PPO, A3C, and PG algorithms, which are best suited for training
discrete actions. We implemented the training process using RLlib,
a scalable and open-source RL library.
Ensemble RL. Prior works have employed a single RL model;
however, capturing the behavior of various applications with a
one-size-fits-all model is challenging and inefficient. Consequently,
we speculated that the ensemble approach would be effective, in
which each RL model 𝑅𝑖 is trained with clustered dataset 𝐶𝑖 (1 ≤
𝑖 ≤ 𝑘). When the model is deployed, the PCA result 𝒑 of the target
program’s extracted feature is used as the RL model’s input. Among
the outputs 𝒐𝑖 ∈ 𝑇𝑛 of each RL model 𝑅𝑖 , the output 𝒐 that best
minimizes the memory profile was chosen (Fig. 1-C).Whenmultiple
outputs equally minimize the memory profile, the output 𝒐 that
minimizes execution time was selected.

3 EXPERIMENTAL RESULTS
We implemented ensemble models that take advantage of clustered
datasets, as well as non-ensemble models trained with each learn-
ing algorithm. We evaluated by comparing each model on 67 test
datasets from Section 2.1 with the LLVM -os option, since -os
best reduced the memory profile among all standard options. The
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Figure 3: Memory profile, Execution time compared to -os.

ensemble model that exploits clustered dataset trained with PPO
reduced 37% memory profile than the -os option (Fig. 3-A), while
also reducing the execution time (Fig. 3-B).

4 CONCLUSION AND OUTLOOK
In this study, we developed an ensemble RL model that exploits
clustered datasets to find the transform passes sequence that best
reduces peak runtime memory profiles. Our model reduced 37%
more memory profile compared to the LLVM -os option. We expect
the proposed model to enable embedded system developers to easily
improve the program’s memory profile, by simply running the RL
model at the compilation stage without any "human-in-the-loop"
processes. In our follow-up study, we plan to in-depth analyze
the RL model behavior, and evaluate our method on real-world,
memory-consuming embedded software.
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