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• Compiler-level code optimization is important but difficult
– Optimizations are applied as a sequence of transformation passes

– However, a single passes sequence are selected that are efficient on specific benchmark 
– Performance gap exists between the ideal and actual compiler-optimized programs

• Among various optimization purposes, we focus on memory profile reduction
– To the best of our knowledge, there is no compiler-level optimization for memory profile

Introduction

M. Hall, D. Padua, and K. Pingali, “Compiler research: The next 50 years,” Commun. ACM, vol. 52, no. 2, p. 60–67, feb 2009.
A. H. Ashouri, W. Killian, and et al., “A survey on compiler autotuning using machine learning,” ACM Comput. Surv., vol. 51, no. 5, sep 2018
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Overview
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Feature Extraction and Dataset

• Feature Extraction.  Extract 50 static feature at compile time from IR with LLVM IR analysis pass
• Dataset. Generate valid random C codes with code sizes over 300kb using Csmith

– Existing microbenchmarks were too simple to reduce memory profile
• Transform Pass Candidates. Selected 32 LLVM transform passes that reduce memory profile
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Dimension Reduction and Clustering

• PCA. Applied PCA to reduce dimension to 15 components, accounting for 99% variances.
• Clustering. Clustered PCA results into 4 subsets by Kmeans

– Alleviate the unfitting and reduce the parameter number for each model
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Ensemble RL Model

• RL model learns the optimal transform pass that maximizes memory reduction
– State. PCA result 
– Reward. 𝑟 = 𝑚𝑠−𝑚0

𝑚0

– Action. each entry representing a transform pass in order
– Learning Algorithm. PPO, A3C, PG
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Ensemble RL Model

• Capturing the behavior of various applications with a one-size-fits-all model is inefficient 
– We propose ensemble learning by training each model on a different clustered dataset

• Among the outputs of each RL model, output best minimizing memory profile was chosen
– Execution time is used as tie-breaker
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Execution timeReduced peak memory profile

Experimental Result
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• Implemented ensemble of clustered datasets, non-ensemble models for each learning algorithm
• Up to 37% memory profile reduction, while also reducing the execution time
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Conclusion and Outlook
• Summary. Proposed an ensemble RL model that exploits clustered datasets to find the transform 

passes sequence that reduced 37% more memory profile compared to the LLVM -os option.
• Contribution. Expect embedded system developers to easily improve the program’s memory profile 

without "human-in-the-loop“ processes.
• Plan. In-depth analyze the RL model behavior, Evaluate on real-world, feasible application
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Q & A
Thank you for your attention

Juneseo Chang: jschang0215@snu.ac.kr
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