
IDT: Intelligent Data Placement for Multi-tiered Main Memory
with Reinforcement Learning

Juneseo Chang
Seoul National University

South Korea
jschang0215@snu.ac.kr

Wanju Doh
Seoul National University

South Korea
wj.doh@scale.snu.ac.kr

Yaebin Moon
Samsung Electronics

South Korea
yaebin.moon@samsung.com

Eojin Lee
Inha University
South Korea

ejlee@inha.ac.kr

Jung Ho Ahn
Seoul National University

South Korea
gajh@snu.ac.kr

ABSTRACT
To address the limitation of a DRAM-based single-tier in satisfying
the comprehensive demands of main memory, multi-tiered mem-
ory systems are gaining widespread adoption. To support these
systems, operating-system-level solutions that analyze the applica-
tion’s memory access patterns and ensure data placement in the
appropriate memory tier have been vastly explored.

In this paper, we identify reinforcement learning (RL) as an effec-
tive solution for tiered memory management, and its policy can be
formulated in a solvable form using RL.We also demonstrate that an
effective region-granularity memory access monitoring method is
necessary to provide an accurate environment state to the RLmodel.
Thus, we propose IDT, an intelligent data placement for multi-
tieredmainmemory. IDT incorporates an RL-based demotion policy
autotuning and a mechanism that efficiently demotes cold pages to
lower-tier memory. IDT also promotes hot pages to upper-tier mem-
ory to minimize access on slow memory, featuring a lightweight
machine learning algorithm. IDT employs region-granularity mem-
ory access monitoring with statistical-testing-based adjacent region
merge and split to improve precision and mitigate ambiguity ob-
served in prior works. Experiments on an actual four-tieredmemory
system show that IDT achieves an average 2.08× speedup over the
default Linux kernel and 11.2% performance improvement com-
pared to the state-of-the-art solution.

CCS CONCEPTS
• Software and its engineering→ Memory management; •
Computer systems organization→ Heterogeneous (hybrid)
systems; •Computingmethodologies→Reinforcement learn-
ing.

KEYWORDS
Memory Tiering, Emerging Memory Technologies, Memory Man-
agement, Reinforcement Learning

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HPDC ’24, June 3–7, 2024, Pisa, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0413-0/24/06.
https://doi.org/10.1145/3625549.3658659

ACM Reference Format:
Juneseo Chang, Wanju Doh, Yaebin Moon, Eojin Lee, and Jung Ho Ahn.
2024. IDT: Intelligent Data Placement for Multi-tiered Main Memory with
Reinforcement Learning. In The 33rd International Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’24), June 3–7, 2024,
Pisa, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3625549.3658659

1 INTRODUCTION
The growing demand for memory-intensive workloads, such as
high-performance computing, graph analytics, and in-memory
databases, is highlighting the scaling limitations of a DRAM-based
single-tier main memory [39]. To tackle this issue, a variety of
memory types with diverse performance characteristics have been
adopted to compose tiered memory systems. Recently, the rising
interest in memories attached to Compute Express Link (CXL-
Memory [9]) underscores that the future lies inmulti-tieredmemory
systems by integrating various heterogeneous memories with a
main-memory-like appearance to a system [36]. Cloud vendors,
such as Amazon and Google, already serve large memory cloud
instances based on multi-tiered memory systems [20, 33].

Tiered memory management requires a keen insight into an
application’s memory usage and placing the data in the proper
memory tier according to its hotness. Thus, a number of prior stud-
ies have proposed operating-system-(OS)-level solutions to improve
application performance by attentively exploiting the tiered mem-
ory system [2, 12, 15, 19, 23, 27, 36, 38, 48, 51, 55]. These OS-level
tiered memory solutions typically consist of data placement to fully
leverage diverse memory types and memory access monitoring to
gather information for guiding data placement.
Data placement. Infrequently accessed pages in tiered memory
should be demoted to lower-tier slow memory for efficient utiliza-
tion of upper-tier fast memory. Moreover, to complement demotion,
hot pages trapped in slow memory should be identified and pro-
moted to upper-tier memory. Several prior studies have utilized the
Linux kernel’s 2Q LRU [19, 21, 35, 36, 56, 57] or multi-generational
LRU (MGLRU) [58] to determine demotion candidates. However,
the data hotness identified by 2Q LRU or MGLRU often fails to re-
flect the actual data hotness of the application. Therefore, precisely
tracking both access frequency and recency for each page, and
establishing a demotion policy with solid criteria would be more
effective. Yet, implementing this method presents the challenge of

https://doi.org/10.1145/3625549.3658659
https://doi.org/10.1145/3625549.3658659
https://doi.org/10.1145/3625549.3658659

HPDC ’24, June 3–7, 2024, Pisa, Italy Juneseo Chang, Wanju Doh, Yaebin Moon, Eojin Lee, and Jung Ho Ahn

adjusting the demotion criteria for the current system behavior.
Moreover, in a multi-tiered memory system, the demotion criteria
should be configured to meet the different access patterns in each
memory tier (§2.2).
Memory access monitoring. To address the high overhead of
page-granularity memory access monitoring, recent studies have
focused on region-granularity monitoring that groups pages with
similar access patterns [40, 45, 48]. They periodically merge or split
adjacent regions to reconfigure the region distribution as the access
patterns of memory objects continuously change. While existing
approaches have been successfully employed in data access-aware
memory management, their merging and splitting mechanisms lack
logical justifications (§2.4).
Key idea. These motivate us to present IDT (IntelligentData Place-
ment for Multi-tiered Main Memory). IDT employs reinforcement
learning (RL) to adjust demotion criteria for the current system
behavior. IDT also provides a promotion mechanism to minimize
access on slow memory, featuring a lightweight machine learning
(ML) algorithm for predictive promotion. Furthermore, IDT pro-
poses a statistical testing-based region reconfiguration technique
to effectively merge and split adjacent regions with a logical basis.
Challenges. Prior works have employed ML to determine param-
eters for demotion or predict future access patterns of each page
for data placement [12, 15, 27, 34]. However, due to the inherent
overhead of MLmodels, they face excessive increases in memory us-
age and execution time or require substantial computing resources
for training. IDT seeks to overcome these issues and demonstrate
performance improvements in actual multi-tiered memory systems.
We focus on implementing a system that outperforms existing
state-of-the-art studies against proper evaluation metrics.
The major contributions of this paper are as follows:
• We identify the need for an RL-based demotion policy by analyz-
ing prior demotion methods (§2.2, §2.3), and formulate demotion
policy in a problem solvable with RL (§3). We also state the need
for region-granularity memory access monitoring with statistical
testing-based region reconfiguration (§2.4).
• We propose IDT, which employs (1) a region-granularity memory
access monitoring (§4.1), (2) a demotion with RL-based policy
autotuning (§4.2), (3) a promotion to minimize potential slow
memory access with a lightweight ML algorithm (§4.3), and (4) a
region reconfiguration that merges or splits adjacent regions by a
statistical method (§4.4).
• We evaluate IDT on an actual four-tiered memory system with
diverse benchmarks. We confirm that IDT achieves an average
2.08× speedup over the default Linux kernel, and 11.2% per-
formance improvement over the state-of-the-art solution (§5.2).
IDT’s source code is available on Github.1

2 BACKGROUND AND MOTIVATION
2.1 OS Support for Tiered Memory Systems
A tiered memory system comprises main memory with memory
nodes of distinct performance characteristics. Such systems have
emerged due to the limitation of DRAM-based single-tier memory
systems in satisfying the ever-growing capacity, bandwidth, and

1https://github.com/scale-snu/IDT

R
e
la

ti
v
e
 H

o
tn

e
s
s

R
e
la

ti
v
e
 H

o
tn

e
s
s

xz (SPEC)

cactuBSSN (SPEC)

V
ir
tu

a
l
A

d
d
re

s
s

8

0
OldYoungActive Inactive

Execution Time Execution Time Execution Time

V
ir
tu

a
l
A

d
d
re

s
s

9

0
Execution Time Execution TimeExecution Time

V
ir
tu

a
l
A

d
d
re

s
s

V
ir
tu

a
l
A

d
d
re

s
s

(a) PTE access bit (b) 2Q LRU (c) MGLRU

Figure 1: Comparison of data hotness derived from the Linux
kernel’s (a) PTE access bit, (b) 2Q LRU (in)active lists, and (c)
MGLRU generations. The accurate data hotness was profiled
using PTE access bit, set by hardware and cleared by the OS.

latency demands for main memory. The rising interest in CXL-
Memory [9] highlights the industry’s recognition of these chal-
lenges. It facilitates the integration of tiered memory and allows a
system to recognize them similarly to CPU-less NUMA nodes [36].
Additionally, High-Bandwidth Memory (HBM)-enabled processors
are becoming available [41], offering an additional tier in the mem-
ory hierarchy. Further, multi-socket NUMA architecture is now
the standard for modern server systems [48]. Thus, the future lies
in multi-tiered memory systems with multiple memory nodes of
different performance characteristics.

Among various approaches to manage tiered memory, we focus
on OS-level solutions, where the OS kernel is responsible for data
placement across various types of memory. This approach offers
the advantage of reflecting the system’s runtime behavior without
requiring hardware or application modifications. They demote sel-
domly accessed pages to a lower-tier memory for efficient use of
deficient fast memory and promote hot pages trapped in lower-tier
memory. They also track the memory access patterns of individual
workloads and place pages in proper memory tiers to maximize
workload performance.

However, a majority of prior OS-level solutions only support
memory systems with two tiers and lack supporting more memory
tiers [19, 21, 28, 35, 36, 56]. Extending them to support multi-tiered
memory is not straightforward, as some solutions lack support for
migration across multiple memory tiers. Therefore, multi-tiered
solutions have been proposed to leverage the entire memory sys-
tem [23, 48]. However, they often miss the faster memory tier in
the fallback path of demotion and show subpar performance com-
pared to two-tiered solutions due to the increased complexity of
managing multiple memory tiers.

2.2 Challenges in Designing a Demotion Policy
An effective demotion scheme is especially crucial because the
scarce fast-memory capacity limits fast memory usage and the op-
eration of the promotion scheme. Further, incorrectly identifying

https://github.com/scale-snu/IDT

IDT: Intelligent Data Placement for Multi-tiered Main Memory with Reinforcement Learning HPDC ’24, June 3–7, 2024, Pisa, Italy

xz (SPEC) cactuBSSN (SPEC) bfs (GAPBS)

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

0

0.2

0.4

0.6

0.8

1

0 200 400

age (ms)

0 200 400

age (ms)

0 200 400

age (ms)

Figure 2: Cumulative probability distribution of accessed
pages’ recency to their last access (age).

demotion targets causes ping-pong of demotion and promotion.
Therefore, an effective demotion scheme should accurately iden-
tify data hotness and establish proper criteria for determining the
demotion candidates.

Utilizing the Linux kernel’s LRU mechanism to determine de-
motion candidates has limitations in accurately identifying data
hotness. Many prior works [19, 21, 35, 36, 56, 57] have utilized the
Linux kernel’s 2Q LRU for their demotion mechanisms. Also, the
Linux kernel community recently introduced MGLRU [58], which
maintains multiple generations of LRU lists for a more fine-grained
page eviction policy. However, the data hotness discerned from 2Q
LRU and MGLRU often deviates from the actual data hotness, as
shown in Figure 1, motivating a more accurate methodology for
accurately identifying data hotness.

A demotion strategy tracking each page’s access frequency (freq)
and recency (age) to determine demotion candidates enables a more
accurate data hotness identification. Meanwhile, establishing ap-
propriate criteria to trigger demotion is challenging. Prior works
have chosen pages with small freq and large age as demotion candi-
dates [19, 21, 27, 28, 35, 36, 54, 56, 57]. While the criterion of small
freq is apparent due to the prevalence of cold pages in memory-
intensive workloads [27, 36], the degree of a large age requires a
more precise standard. Figure 2 shows the cumulative probabil-
ity distribution of accessed pages’ age in different workloads. The
convex distributions confirm higher access probabilities for pages
with lower age. Thus, an effective demotion strategy would demote
pages with age above a threshold (age_thres) to keep frequently
accessed pages in the fast memory. Meanwhile, the distinct steep-
ness motivates adapting age_thres to the current system behavior.

Furthermore, a multi-tiered memory system should determine
proper age_thres for each memory tier. Because the characteris-
tics of pages residing in each memory tier are distinct, applying
unified demotion criteria across all memory tiers is not suitable.
This motivates the need for a system that autonomously adjusts
the demotion criteria online for each memory tier.

2.3 ML in Tiered Memory Management
Adjusting a policy based on current information is a task at which
ML excels [11, 37]. Because the OS lacks prior knowledge of each
workload’s memory access patterns, it must infer appropriate de-
motion policy from runtime information. ML can handle this by
adapting the policy towards the optimization objectives, such as
minimizing the execution time. For example, an ML model can
be trained to determine the appropriate age_thres to minimize
performance penalty from slow memory accesses.

Prior studies have employed ML for tiered memory management.
Kleio [12] utilizes a per-page online training LSTM model that
predicts the future access pattern for each page. It then allocates
a page to an appropriate memory tier according to its predicted
future coldness. While Kleio demonstrates the potential of applying
ML to tiered memory management, it has substantial per-page
training time (2 hours) and memory usage (tens of GBs). Coeus [13]
improves Kleio’s overhead up to 3× by training the LSTM model
on a group of pages sharing the same access pattern. However,
Coeus still exhibits substantial overhead over non-ML solutions, as
it needs to train and infer numerous models for page placement.
Another study that has been employed in Google’s warehouse-
scale computing (WSC) [27] optimizes demotion parameters using
a Gaussian Process Bandit model based on WSC’s memory traces.
However, searching for the optimal value reportedly takes a day,
making it feasible only at the warehouse scale.

The common limitations of these ML-based approaches are ex-
tensive training times for accurate predictions and maintaining
large training datasets for supervised learning. To address this, we
explore the use of RL, which has been successfully adapted to data
placement policy in hybrid storage systems [32, 43, 50]. RL is an ML
algorithm where an agent learns by interacting with the environ-
ment [52]. At each time step, the agent observes the environment
state and selects an action based on its policy. After applying the
action, the agent receives a reward that serves as feedback to the
policy. RL operates in a lightweight manner that’s highly analogous
to systemmanagement strategies. Furthermore, RL facilitates online
training and adaptability compared to other ML algorithms, thereby
allowing the system to respond to dynamic system behavior.

Takeaway 1: RL can effectively provide demotion criteria by
adjusting it to the current system behavior.

RL also offers extensibility, empowering it to support multiple
memory tiers efficiently. By running inference of an RL model
for each memory tier, the system can adaptively adjust demotion
criteria for each memory tier at runtime.

Takeaway 2: RL’s extensibility can empower dynamic ad-
justment of demotion criteria for each memory tier.

To apply RL, obtaining the current system environment state is
imperative. However, capturing the state by page-granularity moni-
toring would result in excessive overhead and RL model complexity.
Moreover, it can lead to a proportional increase in monitoring
overhead as the number of pages grows. Thus, it is particularly
unsuitable for memory-intensive workloads. This underscores the
need for an effective memory access monitoring method to gather
current environment information with low overhead.

2.4 Region-granularity Memory Access
Monitoring

To address the limitations of page-granularity monitoring, region-
granularity monitoring, which monitors groups of pages with
similar characteristics, has been recently gaining popularity. DA-
MON [44], the Linux kernel data access monitoring framework,

HPDC ’24, June 3–7, 2024, Pisa, Italy Juneseo Chang, Wanju Doh, Yaebin Moon, Eojin Lee, and Jung Ho Ahn

demonstrates that its region-granularity monitoring scheme accu-
rately discerns workload access patterns. Furthermore, MTM [48]
shows that the multi-tiered memory can be effectively managed
using information from region-granularity monitoring.

Region-granularity monitoring involves merging and splitting
adjacent regions to group pages with analogous access patterns.
Considering that the access patterns of memory objects may change
as the workload executes, region merge and split have to operate
periodically. Thus, the key point of region-granularity monitoring
lies in the proficiency of merge and split operations.

Despite the importance of region merge and split, prior works
lack foundation in their method. For instance, DAMON merges
adjacent regions if their access frequency difference is less than
10% of the maximum freq across all regions. Additionally, DAMON
periodically splits each region into random sizes. MTM merges
adjacent regions if their access counts differ by less than one-third
of the scan count. For split, it employs two sampling pages from
a region and splits the region when their access count difference
exceeds two-thirds of the scan count. While the mechanism and
thresholds used for merging and splitting are undoubtedly crucial,
they lack a logical basis for their values and mechanism.

To address these limitations in prior works, we revisit the essence
of region-granularity monitoring. Region-granularity monitoring
assumes that similar pages are grouped into the same region. Under
this assumption, the similarity between adjacent regions is assessed
based on the sampling pages. Thus, two key aspects are considered
as the core of region management: (1) the region groups similar
pages together, and (2) the sampling pages’ information determines
the identicality of adjacent regions.

For the first aspect, a straightforward approach involves sam-
pling multiple pages within a region and comparing their status.
For the second aspect, this is a classic statistical testing problem of
inferring population similarity based on samples. In other words,
determining region merge can be effectively addressed with a sta-
tistical foundation.

Takeaway 3: Statistical testing can introduce a foundation
in region-granularity monitoring methods.

3 RL FORMULATION
We formulate the demotion policy in a proper form to apply RL,
using its mathematical framework. Then, we propose an approx-
imation of the formulated problem to ensure its practicality for
implementation in an actual system.

3.1 Problem Formulation
An effective demotion policy aims to maximize workload perfor-
mance with a proper degree of fast memory reservation. Demoting
pages that will be infrequently accessed in the future ensures mini-
mal access to the lower-tier memory. Moreover, this can prevent
the unnecessary presence of cold pages in fast memory, reserving
fast memory for future allocation requests. Thus, we can express
the optimization goal for deriving optimal demotion policy 𝜋∗ as:

𝜋∗ = argmax
𝜋

1
𝑇

𝑇∑︁
𝑡=1

(
(1 − 𝛽)𝑃𝑒𝑟 𝑓 (𝑡) + 𝛽

𝑀𝑒𝑚(𝑡)

)
(1)

where 𝑃𝑒𝑟 𝑓 (𝑡) and 𝑀𝑒𝑚(𝑡) represent the performance and fast
memory usage at time 𝑡 . The parameter 𝛽 signifies the balance
between performance and fast memory reservation. A small 𝛽
value indicates an objective to maximize the application’s per-
formance [23, 36, 48], whereas a large one represents prioritiz-
ing fast memory reservation to reduce the total cost of owner-
ship [15, 27, 38].

Through the established mathematical framework of RL [52],
we can formulate our goal into a solvable form using RL. The opti-
mization goal in Equation 1 can be converted to Markov Decision
Process (MDP)𝑀 = (𝑆,𝐴, 𝑃, 𝑅). In this context, the demotion policy
𝜋 maps the system state 𝑆 to demotion action𝐴. The transition prob-
ability 𝑃 (𝑠′ |𝑠, 𝑎) represents the probability of transitioning to state
𝑠′ given 𝑠 and action 𝑎. The immediate reward when transitioning
from 𝑠 to 𝑠′ by taking 𝑎 is 𝑅(𝑠, 𝑎, 𝑠′) = (1 − 𝛽)𝑃𝑒𝑟 𝑓 (𝑡) + 𝛽/𝑀𝑒𝑚(𝑡).

From MDP, the value function 𝑉 𝜋∗ (𝑠), representing the max-
imum cumulative reward starting from 𝑠 and following optimal
policy 𝜋∗, can be denoted by the Bellman equation:

𝑉 𝜋∗ (𝑠) = argmax
𝑎∈𝐴

[∑︁
𝑠′ ∈𝑆

𝑃 (𝑠′ |𝑠, 𝑎)
(
𝑅 (𝑠, 𝑎, 𝑠′) + 𝛾𝑉 𝜋∗ (𝑠′)

)]
(2)

Thus, the optimization goal is to find 𝜋∗ that satisfies Equation 2.
However, solving Equation 2 to find 𝜋∗ is computationally expen-
sive. Hence, by representing the value function 𝑉 𝜋 (𝑠) with the
Q-function 𝑄𝜋 (𝑠, 𝑎), which denotes the cumulative reward when
choosing 𝑎 from 𝑠 and following 𝜋 , 𝜋∗ can be expressed as:

𝜋∗ = argmax
𝜋

E𝜋
[
𝑄𝜋 (𝑠, 𝑎)

]
When parameterizing 𝜋 against 𝜃 and defining the objective

function 𝐽 (𝜃) = E𝜋𝜃 [𝑄𝜋𝜃 (𝑠, 𝑎)], 𝜋∗ can be found using the Policy
Gradient (PG) algorithm:

∇𝜃 𝐽 (𝜃) = E𝜋𝜃 [∇𝜃 log𝜋𝜃 (𝑎 |𝑠)𝑄𝜋𝜃 (𝑠, 𝑎)]

𝜃 ← 𝜃 + 𝛼∇𝜃 𝐽 (𝜃)

However, PG can sometimes lead to large policy updates that make
learning 𝜃 unstable. To address this, Proximal Policy Optimization
(PPO) algorithm constrains the policy updates, ensuring that the
updated policy does not deviate significantly from the previous
one [49]. In summary, a proper demotion policy can be derived
using RL, based on its mathematical framework.

3.2 Approximating Goal, State, and Action
3.2.1 Optimization Goal. Our primary objective is to maximize
performance improvement by fully leveraging tiered memory.
However, we should not overlook the significance of reserv-
ing fast memory capacity. Over-utilizing fast memory can lead
to performance degradation since every subsequent allocation
would necessitate demotion to free up available space in deficient
fast memory. Therefore, we intend to proactively initiate demo-
tion when the available space in the fast memory goes below
demote_wmark and set its value higher than the watermark of prior
studies [19, 21, 23, 35, 36, 47, 48, 57]. Thus, demote_wmark enables
us to omit the term related to𝑀𝑒𝑚(𝑡) in Equation 1:

IDT: Intelligent Data Placement for Multi-tiered Main Memory with Reinforcement Learning HPDC ’24, June 3–7, 2024, Pisa, Italy

Demote

Tiered Memory

Kernel

UserMonitoring Info Demotion Policy

Workload

Access

Monitoring
RL-based Demotion Policy Autotuning2

Memory Access

Monitoring
1

Demotion

Mechanism
2

Promotion

Mechanism
3

Promote

Region Reconfig4

Merge or

Split

Figure 3: The overall architecture of IDT.

𝜋∗ = argmax
𝜋

1
𝑇

𝑇∑︁
𝑡=1

𝑃𝑒𝑟 𝑓 (𝑡)

To capture 𝑃𝑒𝑟 𝑓 (𝑡) more pragmatically, we formulate the perfor-
mance in terms of memory access. 𝑃𝑒𝑟 𝑓 (𝑡) is inversely proportional
to the lower-tier memory access frequency (slow_hit) due to per-
formance degradation when accessing slow memory. However,
denoting 𝑃𝑒𝑟 𝑓 (𝑡) simply as 1/slow_hit(t)would lead 𝜋∗ to avoid
any page demotion to minimize slow_hit. Meanwhile, we have
demonstrated that reserving fast memory is crucial for future mem-
ory allocation requests. Thus, accounting reserved fast memory
in 𝑃𝑒𝑟 𝑓 (𝑡) can lead 𝜋∗ to minimize slow_hit while appropriately
demoting pages.

3.2.2 State. The RL model’s state should be a simplified represen-
tation that accurately reflects the current environment information.
The readily available information is freq and age for each region.
Given that a significant portion (30-40%) of pages allocated by data
center workloads are not accessed for dozens of seconds [27, 36],
we can only consider pages with minimum access frequency as
demotion candidates. Thus, restricting our interest to pages with
minimum freq, the state can be simplified as a function of age.

3.2.3 Action. As discussed in §2.2, prior works showed the effec-
tiveness of demoting the least recently used cold pages. We also
stated that the goal of our demotion policy is to provide a clear
age threshold, age_thres. This allows us to simplify the action in
RL by determining the appropriate age_thres value at each time
point.

4 IDT: DESIGN
Based on these motivations, we design IDT, Intelligent Data place-
ment for multi-Tiered main memory. IDT consists of four compo-
nents, as shown in Figure 3:
(1) Memory Access Monitoring gathers region-granularity memory

access information.
(2) Demotion policy and mechanism provide RL-based age_thres

autotuning and effective support for multi-tiered memory.
(3) Promotion mechanism promotes hot pages in slow memory to

minimize slow memory access.
(4) Region Reconfigurationmerges and splits adjacent regions based

on statistical methods.

Virtual

Address Space

Region 1

freq1 age1

Region 2

freq2 age2

Region 3

freq3 age3

Region 4

freq4 age4
VMA 3

VMA 1

VMA 2

1 1 0 1 1

0 1 0 0 1

0 1 0 1 1

0 1 0 0 0

Regions history

Figure 4: IDT’s memory access monitoring and associated
freq, age, and history variables for each region.

4.1 Memory Access Monitoring
4.1.1 Region-granularity Monitoring. IDT partitions the Virtual
Memory Area (VMA) into multiple regions. VMA represents a con-
tiguous range of virtual memory that shares common attributes.
Each region is sampled for access at every sample_interval. Then,
the regions are dynamically reconfigured by merging or split-
ting at every aggregate_interval. The region reconfiguration
method is further explained in §4.4. The sample_interval and
aggregate_interval are set to 10ms and 1,000ms. The sensitivity
study for the interval values is provided in §5.8.

4.1.2 Page Sampling. IDT maintains freq, age, and history vari-
ables for each region, as shown in Figure 4. Access for each region is
tracked utilizing the PTE access bit. IDT designates one page from
the first half and another page from the remaining half of the region
as sampling pages. The freq of the region is incremented in each
sample_interval if any of the sampling pages has its PTE access
bit set. The age is managed using DAMON’s aging algorithm [45]
by utilizing freq and region size changes. The history is a 1024-bit
vector that records region access status at each sample_interval.

For a region split, the new region inherits the original values.
For a region merge, the new region’s variables are set based on the
size-weighted average of the merged regions.

IDT also records demoted_pages and slow_hit for each mem-
ory node. demoted_pages represents the total number of demoted
pages from the memory node. slow_hit represents the aggregate
size (in a unit of page) of regions that were demoted from the
memory node but reaccessed in the lower tier memory.

4.2 Demotion
To address Takeaway 1 and Takeaway 2, IDT employs an RL-
based policy autotuning in the user space and a demotion mecha-
nism within the OS kernel.

4.2.1 RL-based Demotion Policy. IDT’s RL model operates as
shown in Figure 5: The state is derived from the moving aver-
age of the aggregated age distribution’s min, q1 (25th percentile),
q2 (50th percentile), q3 (75th percentile), and max values. Further,
we apply principal component analysis (PCA) to remove extreme
outliers when calculating the moving average 1 . IDT then feeds

HPDC ’24, June 3–7, 2024, Pisa, Italy Juneseo Chang, Wanju Doh, Yaebin Moon, Eojin Lee, and Jung Ho Ahn

ㅈ Demotion MechanismㅈMoving Average

PCA

q3

max

argmax

q2

age_thres

State s

Experience Buffer

Action a

slow_hit

demoted_pages

Reward r
Reward Function

RL - Training

State S Action A Reward R

Train and Update Inference Network

Memory Access Monitoring

Get State1Feed to Network2Get Action3

Update

Demotion Policy

4

Save to Buffer7 Get Stats After

Applying Demotion Policy
5

Get Reward6Train when the Experience Buffer is Full8

age Statistics

…
…

Kernel
RL - Inference

Figure 5: The overall architecture of IDT’s RL model for optimizing age_thres.

the gathered state to the inference network 2 and determines the
new age_thres value from the inference network output 3 . Using
the new age_thres, IDT updates the demotion policy 4 . After
applying age_thres, the system waits for an action_interval
and retrieves the number of demoted_pages and slow_hit during
the interval 5 . The reward is then calculated as follows 6 .

𝑟𝑒𝑤𝑎𝑟𝑑 ≜ 𝑙𝑜𝑔

(
demoted_pages + 𝜖

slow_hit + 𝜖

)
(3)

The state, action, and reward are stored in the experience buffer 7 .
When it is full, IDT trains and updates the inference network 8 .
Detailed design. The input layer of the RL model consists of five
nodes representing each moving average of age statistics. To access
region statistics of each memory tier, we developed a kernel driver
to expose them to the /proc filesystem. IDT utilizes the moving
average of five representative values to encapsulate the essential
characteristics of the age distribution into a lower dimension.

The inference network, which is for the parameterization of
demotion policy (i.e., 𝜃 in §3.1), comprises two fully connected
layers with 16 and 32 nodes. The output layer consists of three
nodes, each representing the q2, q3, and max age statistics values of
the regions with appropriate freq criteria. The age statistics value,
signified by the node with the maximum value in the output layer,
is chosen as the new age_thres. That is, the RL model chooses the
age_thres among the age distribution’s q2, q3, and max values to
control the aggressiveness of demotion.

The reward function defined in Equation 3 guides the RL model
toward an action that reserves fast memory while minimizing per-
formance degradation. Given that demoted_pages and slow_hit
are readily available from §4.1, Equation 3 is a feasible reward func-
tion. 𝜖 prevents the equation from diverging when the numerator
and denominator are of small value.

The network is trained using the PPO algorithm [49]. For hyper-
parameters, we set the discount factor to 0.9, the learning rate to
0.01, and the exploration rate to 0.05. The batch size was aligned to
the experience buffer size. We conducted the sensitivity study for

Workload

Running

Infer Wait Infer Wait … Train …

< demote_wmark

RL Model

4 Inferences

> demote_wmark

4ms 2,000ms 4ms 2,000ms 300ms

Figure 6: The execution phase of IDT’s RL model.

RL hyperparameters in §5.3. The RL model was implemented using
RLlib framework [29] based on PyTorch [46].
Execution phase.We have demonstrated in §2.3 that prior stud-
ies on ML-based tiered memory management exhibit high over-
head due to training time and memory usage of their ML models.
To address this, IDT presents a novel execution phase (see Fig-
ure 6) that significantly mitigates the RL model’s overhead. The
RL model is triggered when the remaining space of a memory
node reaches demote_wmark. Following inference, it undergoes an
action_interval delay, contributing to a further overhead reduc-
tion. On a single CPU core, the inference model takes 2-4ms, and
the training, which occurs every four inferences, takes 200-300ms.
We set the action_interval=2s and experience buffer size to 4 to
ensure that the RL’s maximum theoretical overhead is below 5%.
Given these values, the maximum overhead of RL can be calculated
as (4𝑚𝑠 × 4 + 300𝑚𝑠)/(2𝑠 × 4) = 3.95% of a single core.

Furthermore, we design the RL model to utilize the lowest-tier
memory to minimize the proportion of memory used by RL in the
overall system. We provide a detailed analysis of the RL model’s
overhead and memory usage in §5.4.
Multi-tier support. As described in §2.2, each memory tier should
manage its own age_thres. Thus, individual inferences are exe-
cuted for each memory tier. Meanwhile, training is done by gather-
ing all experiences from each memory tier. The trained network is
shared by all inferences for each memory tier.
Transfer learning. Transfer learning can yield the effect of fine-
tuning for online learning models, for which the RL model is

IDT: Intelligent Data Placement for Multi-tiered Main Memory with Reinforcement Learning HPDC ’24, June 3–7, 2024, Pisa, Italy

w

Node 1 Node 3Node 0 Node 2
< demote_wmark < demote_wmark

Demotion Mechanism
(age ≥ age_thres and minimum freq)

Demotion Candidates1

Demote2Demote3

Kernel

Update

Stats
4

Node 0 Node 2Node 1 Node 3

Lower Tier (Slower)

Figure 7: Demotion mechanism in IDT.

pre-trained using the giga update operations per second (GUPS)
microbenchmark [18]. The GUPS microbenchmark used for pre-
training encompasses three distinct access patterns that were also
used for evaluation in [47]: Uniform random access, Hot set and
Dynamic hot set. Uniform random access performs random access
over the working set. Hot set performs 90% of access on hot objects
and the remaining uniform randomly. Dynamic hot set changes
consecutive 4GB hot objects every 150-second intervals. The GUPS
microbenchmark was configured to use a single CPU core with a
working set size of 100GB.

4.2.2 Demotion Mechanism. Figure 7 shows the overall demotion
mechanism implemented in the OS kernel. Demotion is triggered
when the memory node’s available space falls below demote_wmark.
A higher demote_wmark value encourages a proactive demotion for
fast memory preservation, whereas a smaller value maximizes the
fast memory utilization to enhance performance.

IDT identifies regions with the minimum freq and age larger
than age_thres as demotion candidates 1 . Starting from the low-
est memory tier with remaining space below demote_wmark, IDT
migrates the demotion candidates to the next lower-tier memory
by migrate_pages() [30] of the Linux kernel 2 . The demoted flag
of a region is set following a successful demotion. Subsequently,
IDT repeats the demotion across higher tiers 3 . Upon completion,
the demoted_pages variable is updated in each memory node to
reflect the total number of demoted pages 4 .
Aggressive demotion. When a workload’s memory usage intensi-
fies to severely depleting memory space, demotion must be more ag-
gressive. Thus, IDT tightens the demotion candidates criteria when
a memory node’s remaining space falls below critical_wmark.
To tighten the demotion criteria, the freq criterion is adjusted
to the average of the minimum and maximum freq values across
all regions. Further, when the demotion candidates are actively
used by an application during page migration, demotion via
migrate_pages() fails. In such a case, IDT attempts to demote
all regions if no pages are demoted during aggressive demotion. In
the cases of extremely deficient fast memory, kswapd is activated
when the available space drops below the Linux kernel’s watermark
(0.1%).

In summary, IDT’s demotion works as Algorithm 1. We set
demote_wmark and critical_wmark to 10% and 1%, respectively.
The generous watermark values can supplement the potential slow

Algorithm 1 Demotion in memory node 𝑛𝑖𝑑

1: 𝑚𝑎𝑥_𝑓 𝑟𝑒𝑞←𝑚𝑎𝑥{freq(𝑟) | 𝑟 ∈ 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 (𝑛𝑖𝑑)}
2: 𝑚𝑖𝑛_𝑓 𝑟𝑒𝑞←𝑚𝑖𝑛{freq(𝑟) | 𝑟 ∈ 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 (𝑛𝑖𝑑)}
3: if capacity(𝑛𝑖𝑑) < critical_wmark then
4: 𝑓 𝑟𝑒𝑞_𝑡ℎ𝑟𝑒𝑠 ← (𝑚𝑖𝑛_𝑓 𝑟𝑒𝑞 +𝑚𝑎𝑥_𝑓 𝑟𝑒𝑞)/2
5: Demote regions with:

age ≥ age_thres and freq ≤ 𝑓 𝑟𝑒𝑞_𝑡ℎ𝑟𝑒𝑠
6: if no demoted pages then
7: Try to demote all regions
8: end if
9: else if capacity(𝑛𝑖𝑑) < demote_wmark then
10: Demote regions with:

age ≥ age_thres and freq =𝑚𝑖𝑛_𝑓 𝑟𝑒𝑞
11: end if

ARP!1

Lower Tier Memory

Kernel

Set as

Query Point

2

Upper Tier Memory PRP!5

Set as Training points3

Get PRP Region4

k-Nearest Neighbor Promotion Mechanism

Figure 8: Predictive Region Promotion (PRP) for predictive
promotion using the 𝑘-Nearest Neighbor algorithm.

migration speed of migrate_pages(). The sensitivity study for the
watermark values is conducted in §5.8.

4.3 Promotion
Hot regions trapped in the lower-tier memory should be promoted
to minimize performance degradation due to slow memory access.
To address this, IDT incorporates a promotion mechanism con-
sisting of three components: (1) Accessed Region Promotion (ARP)
for promoting regions upon access, (2) Predictive Region Promotion
(PRP) for predictive promotion, and (3) Misplaced Region Promotion
for relocating regions in a suboptimal memory tier.

4.3.1 Accessed Region Promotion. ARP is triggered when IDT’s
memory access monitoring detects access to a region in a lower-tier
memory. This immediate response is motivated by the principle
of temporal locality, indicating that recently accessed regions are
likely to be needed again soon. Then, the uppermost memory tier is
set to the destination node for promotion. However, if the remaining
space in the uppermost memory tier falls below critcal_wmark,
IDT promotes the region to the next highest tier. This prevents IDT
from thrashing when the fast memory’s available space is deficient.
Once the destination node is determined, all pages within the region
are migrated. Upon completion, the slow_hit variable is updated
in each memory tier to reflect the total number of promoted pages.

4.3.2 Predictive Region Promotion. ARP’s limitation is that it does
not initiate promotion until access to the region’s sampling pages
is observed. If regions that are similar to the ones being promoted

HPDC ’24, June 3–7, 2024, Pisa, Italy Juneseo Chang, Wanju Doh, Yaebin Moon, Eojin Lee, and Jung Ho Ahn

by ARP are preemptively promoted, we can reduce slow-memory
access that is undetected by our region-granularity monitoring
method. Thus, IDT provides predictive region promotion (PRP) by
proactively promoting similar regions to the one that triggered
ARP (see Figure 8).

PRP is initiated immediately when ARP is triggered 1 . To iden-
tify similar regions, we employ𝑘-Nearest Neighbor (𝑘-NN), a simple
ML algorithm that finds the 𝑘 closest training points for a given
set of query points [26]. In the context of PRP, IDT sets the query
point to the ARP region 2 , and the training points to regions in the
memory tier where the region promoted with ARP was originally
at 3 . Then, IDT selects a region with a minimum distance to the
query point by 𝑘-NN. If the selected region has a distance less or
equal to the so-far minimum distance, it is selected as a PRP region
4 . We formulate the distance function as the sum of the normalized
virtual address distance and the access history distance. For regions
𝑟1 and 𝑟2, in which 𝑟1’s end address is lower than 𝑟2’s start address,
the distance 𝑑 (𝑟1, 𝑟2) is defined as:

Let 𝑑VA (𝑟1, 𝑟2) ≜ 𝑟2 .start_addr − 𝑟1 .end_addr

Let 𝑑H (𝑟1, 𝑟2) ≜ Hamming(𝑟1 .history, 𝑟2 .history)

𝑑 (𝑟1, 𝑟2) ≜
𝑑VA (𝑟1, 𝑟2) − 𝑑VA

𝜎𝑑VA
+ 𝑑H (𝑟1, 𝑟2) − 𝑑H

𝜎𝑑H
(4)

where each term in Equation 4 represents spatial and temporal
locality. Finally, the PRP region is promoted following ARP’s 3, 4,
and 5 steps 5 .

4.3.3 Misplaced Regions Promotion. When IDT ’s promotion mech-
anism places a region in a suboptimal tier due to the full uppermost
memory tier, a fair re-promotion is needed if there’s available space
in the uppermost memory tier. Moreover, when a workload sud-
denly allocates more pages than the available space in the fast
memory, the Linux kernel’s kswapd may demote pages to a lower
tier memory before IDT can handle them. We refer to these regions
as misplaced regions. Misplaced regions are identified during the
page sampling, as regions residing outside the uppermost memory
tier without a demoted flag set. As soon as a misplaced region is
identified, IDT promotes it to the highest memory tier with remain-
ing space above critcal_wmark. For the workloads used in our
evaluation, this promotion component corresponds to an average
of 9.71% of the total promotion.

4.4 Region Reconfiguration
4.4.1 Region Merge. To address Takeaway 3, IDT employs a sta-
tistical technique to estimate whether adjacent regions can be clas-
sified into the same category. We define the similarity as regions
having similar access frequencies at each time interval.

IDT applies a sliding window of size 𝑛 over the history vector
to verify the similarity of the access ratio. Within this window, IDT
checks the access counts for two regions, 𝑎1 and 𝑎2. Then, IDT
statistically validates the similarity of adjacent regions by Fisher’s
exact test. The null hypothesis of the test is that the regions have
different access ratios:

pvalue =
(
𝑛

𝑎1

)
·
(
𝑛

𝑎2

)
/
(

2𝑛
𝑎1 + 𝑎2

)
(5)

If the test result rejects the null hypothesis at a 90% significance
level across every window on the history vector, we consider the
two regions to be similar and merge them. We choose a relatively
low significance level from commonly used values. This allows
us to merge windows with roughly similar distributions and later
verify if regions are appropriately grouped in the splitting process.

The sliding window enables IDT to assess whether two regions
have similar access patterns over each temporal interval. We also
utilize Fisher’s exact test for its simplicity of implementation in the
kernel space, efficient computation, and no prior assumption for the
population to follow a normal distribution. The sliding window’s
stride was set to one, while the actual computational overhead was
kept low due to repeated values of 𝑎1 and 𝑎2. We select 𝑛 = 16 to
avoid complex overflows that arise in the calculation of Equation 5.

4.4.2 Region Split. In contrast, when pages within a region exhibit
different access patterns, the region should be split. If a region grows
excessively large, the potential penalty for an improper demotion
increases. To address these issues, IDT divides a region into two
halves of equal size when the access status of the sampling pages
differ at sample_interval. This strategy is based on the principle
that a region should group pages with similar access patterns.

5 EVALUATION
5.1 Experimental Setup
System configuration. We developed IDT on top of the Linux
kernel v6.0.19. IDT’s memory access monitoring was implemented
based on DAMON [44]. To build multi-tiered memory systems with
publicly available systems, we configured the evaluation system
with a four-tiered memory hierarchy based on the latency of each
memory [48], as shown in Figure 10. The evaluation system features
two 24-core Intel Xeon Platinum 8260 processors with 32GB DDR4
DRAM (fast memory) and 256GB Intel Optane DCPMM (slow mem-
ory) for each socket. The DCPMMs were configured to App-direct
mode to expose them as kernel NUMA nodes.
Methodology.We evaluated IDT against Graph500 [4], SPECspeed
2017 (SPEC [8]), and GAP Benchmark Suite (GAPBS [5]) with the
twitter graph. From SPEC, we selected benchmarks with large res-
ident set size (RSS): deepsjeng, imagick, bwaves, xz, roms, and
cactuBSSN. For GAPBS, we utilized Breadth-First Search (bfs) and
PageRank (pr). We bound processes to the CPU cores of socket 0
using the numactl -c0 option so that our system is configured with
four memory tiers. We configured benchmarks to have RSS between
96GB and 110GB, which facilitates utilizing three memory tiers,
two fast and one slow memory. The RSS was set by tuning graph
properties in Graph500 and running multiple copies of benchmarks
for SPEC and GAPBS.

We compared IDTwith four state-of-the-art OS-level tiered mem-
ory management solutions: Intel Tiering 0.8 [21], TPP [36], AutoTier-
ing OPMX [23], and AutoNUMA Tiering (MGLRU) [57, 58]. Intel
Tiering and TPP are designed for two-tiered memory, whereas Au-
toTiering and AutoNUMA Tiering (MGLRU) support multi-tiered
memory. We configuredAutoNUMA Tiering (MGLRU) by setting the
demotion path the same as IDT, and enabling MGLRU in the Linux
kernel v6.1.0. Given the substantial overhead associated with prior

IDT: Intelligent Data Placement for Multi-tiered Main Memory with Reinforcement Learning HPDC ’24, June 3–7, 2024, Pisa, Italy

1
.4

8

1
.4

8

1
.5

4

1
.8

7

2
.0

8

0

1

2

3

4

imagick
(11557.26s)

deepsjeng
(1749.62s)

bwaves
(13126.74s)

roms
(43564.62s)

cactuBSSN
(22963.61s)

xz
(4959.5s)

graph500
(1818.98s)

bfs
(1085.99s)

pr
(4951.29s)

AVG

S
p

e
e

d
u

p

IntelTiering TPP AutoTiering AutoNUMA Tiering (MGLRU) IDT

Figure 9: Speedup (higher is better) normalized to the baseline, AutoNUMA Balancing. The numbers below each benchmark
indicate the raw execution time of the baseline.

DRAM 1
145ns

DCPMM 1
340ns

Socket 1

CPU 1

DRAM 0

tier0

DCPMM 0

tier2

DRAM 1

tier1

DCPMM 1

tier3

Slower Latency

CPU 0 Running

DRAM 0
90ns

DCPMM 0
275ns

Socket 0

32GB 32GB256GB 256GB

Figure 10: Multi-tiered memory system with four memory
tiers used for evaluation.

ML-based solutions [12, 13, 27], we decided that directly compar-
ing their performance with IDT and state-of-the-art solutions was
not suitable. To ensure a precise experiment, we disabled Hyper-
Threading, DVFS, Intel Turbo-boost, and prefetching during evalu-
ation. We used the reciprocal of execution time as the performance
metric, and the experimental results were normalized against the
default Linux scheme, AutoNUMA Balancing [16] in the vanilla
Linux kernel v6.0.19.

5.2 Performance of IDT
IDT improves performance on each benchmark through its adapt-
ability to the current system behavior and effective use of multi-
tiered memory. Figure 9 shows the speedup of IDT and its counter-
parts, normalized toAutoNUMA Balancing. IDT achieves an average
speedup of 2.08×, which is better than 1.48× of Intel Tiering and
TPP, 1.56× ofAutoTiering, and 1.87× ofAutoNUMATiering (MGLRU).
That is, IDT outperforms the best-performing state-of-the-art solu-
tion by 11.2%.

IDT shows substantial speedups in bwaves, roms, and
cactuBSSN, which exhibit clear distinction of hot/cold regions and
high memory access locality. IDT benefits from these workloads
by adapting the demotion policy through the RL model according
to the workload’s regular access patterns. Additionally, high local-
ity benefits PRP by effectively promoting regions that would be
accessed in the future (§5.6).

For graph500, AutoTiering performs better than IDT. graph500
exhibits low memory access locality and random access patterns
during the graph search phase. Random access patterns pose chal-
lenges in the online training RL model and effective predictive

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

xz cactuBSSN bfs

Q2 Q3 MAX IDT

Static Threshold

0.2

0.4

0.6

0.8

1

Q2 Q3 MAX IDT

Static Threshold

Q2 Q3 MAX IDT

Static Threshold

Figure 11: Performance comparison when applying static
age_thres (higher is better).

promotion by PRP. Also, low locality increases the number of re-
gions, increasing the monitoring overhead. Still, IDT outperforms
the second-best performing solution (Intel Tiering) by 23.5%.

All solutions show modest speedup in imagick. imagick is pre-
dominantly cold, which indicates that the performance improve-
ment from tiering systems is marginal. Further, imagick shows
similar performance even when the fast memory is expanded to fit
all working sets (§5.7). Overhead is a more significant concern in
such cases, and the modest performance improvement of IDT over
other solutions highlights its minimal overhead.

5.3 RL Effectiveness Analysis
To validate the effectiveness of IDT’s RL model, we compared the
overall performance against applying static age_thres instead of
value obtained from the RL model. The static age_thres were set
among the three possible RL model’s actions: q2, q3, and max of
the age distribution. Note that IDT’s RL model continuously adapts
age_thres among these three configurations to the workload’s cur-
rent execution context. As shown in Figure 11, the best-performing
static age_thres varied across each workload. Meanwhile, IDT
outperforms all static configurations, implying that the RL model
adapts age_thres value appropriatly for each workload.

We further analyzed the RL model’s effectiveness by observing
performance variation on cactuBSSN according to three critical
RL hyperparameters: learning rate (𝛼), exploration rate (𝜖), and
discount factor (𝛾). Note that IDT’s RL model utilizes 𝛼 = 0.01,
𝜖 = 0.05, and 𝛾 = 0.9.
Online training efficacy. The learning rate determines the rate
of updating network weight during online training. Figure 12(a)
shows that IDT improves performance over a non-online learning

HPDC ’24, June 3–7, 2024, Pisa, Italy Juneseo Chang, Wanju Doh, Yaebin Moon, Eojin Lee, and Jung Ho Ahn

3.4

3.6

3.8

4

4.2

0 0.01 0.05 0.1

(a) Learning Rate (b) Exploration Rate

0 0.5 0.9 1

(c) Discount Factor

S
p
e
e
d
u
p

0 0.05 0.1 0.2 1

Figure 12: Performance variations of IDT to the RL model’s
(a) learning rate, (b) exploration rate, and (c) discount factor.

baseline (𝛼 = 0), which underscores the effectiveness of online
training.
Exploration rate. The exploration rate determines the favor of
taking random actions over learned policy. Figure 12(b) shows a
sharp performance drop as exploration rates increase, which indi-
cates that IDT is more effective than the random policy. Meanwhile,
performance was slightly degraded without exploration (𝜖 = 0).
This highlights the exploration’s role in preventing the RL agent
from being stuck in a suboptimal policy.
Pre-training efficacy. The substantial performance difference be-
tween a static pre-trained network (i.e., 𝛼 = 0) and a complete
random policy (i.e., 𝜖 = 1) highlights the efficacy of pre-training
the RL model on the GUPS microbenchmark.
Discount factor. The discount factor progressively weighs re-
cent rewards when calculating the cumulative reward. Figure 12(c)
shows that IDT performs better than the case of only accounting
for the immediate reward (i.e., 𝛾 = 0).

5.4 RL Overhead Analysis
To measure the overhead of IDT’s RL model, we profiled the CPU
and memory usage of RL during the evaluation of xz in §5.2.

The average CPU usage of IDT’s RL model is 1.35% of a single
core, with peak usage reaching 3.75% during training phases. The
peak memory usage is 4,776MB, and by assigning the RL to the
lowest memory tier (tier3 in Figure 10), this only constitutes 0.83%
of the total memory. The RL model’s low CPU and memory
overhead makes IDT a feasible solution for real-world systems,
compared to the prior ML-based approaches.

5.5 Memory Access Monitoring Effectiveness
To validate the effectiveness of IDT’s memory access monitoring,
we compared the overall performance against applying DAMON-
based monitoring [44]. Hence, we implemented DAMON-based
region reconfiguration (IDT-DAMON) by replacing IDT’s region
reconfiguration method with DAMON’s algorithm. As shown in
Figure 13, IDT’s region reconfiguration method achieves a modest
performance improvement over DAMON.

To better understand the precision of region management,
we compared the characteristics of regions merged by DAMON
and IDT’s region reconfiguration. Specifically, we compared the
history vector’s hamming distance of the merged regions, which
indicates a difference in their access patterns. DAMON’s average
hamming distance was 8.13, while IDT was 5.15. This implies that
DAMON often merges more regions with dissimilar behaviors

0
.9

5
 1

0.8

0.85

0.9

0.95

1

im
a
g
ic

k

d
e

e
p
s
je

n
g

b
w

a
v
e
s

ro
m

s

c
a
c
tu

B
S

S
N x
z

g
ra

p
h
5
0
0

b
fs p
r

A
V

G

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

IDT-DAMON IDT

Figure 13: Performance comparison when applying DAMON-
based memory access monitoring (higher is better).

0
.9

7

1

0.8

0.85

0.9

0.95

1

im
a
g

ic
k

d
e
e
p
s
je

n
g

b
w

a
v
e
s

ro
m

s

c
a
c
tu

B
S

S
N x
z

g
ra

p
h
5
0
0

b
fs p
r

A
V

G

R
e
la

ti
v
e

 P
e
rf

o
rm

a
n
c
e

Without PRP IDT

Figure 14: Performance comparison when PRP is not used
(higher is better).

75.7 80.0

100.0
93.3 98.0

71.4 71.9

100.0
92.7 87.0

0

25

50

75

100

im
a

g
ic

k

d
e

e
p

s
je

n
g

b
w

a
v
e
s

ro
m

s

c
a

c
tu

B
S

S
N x
z

g
ra

p
h

5
0

0

b
fs p
r

A
V

GP
R

P
 A

c
c
u

ra
c
y
 (

%
)

Figure 15: Accuracy of PRP (ratio of region accessed that was
promoted by PRP).

than IDT. Therefore, we suggest that IDT’s region reconfigura-
tion method addresses limitations observed in prior works, while
better capturing similar regions.

5.6 Predictive Region Promotion Accuracy
To validate the effectiveness of PRP, we compared the overall per-
formance when PRP is not used in IDT. Figure 14 confirms that
PRP contributes to the performance improvement of IDT.

To better understand the efficacy of PRP, we evaluated its accu-
racy. We define accuracy as the ratio of regions promoted by PRP
that were subsequently accessed again, detected by the memory
access monitoring. Note that only regions that were promoted and
not subsequently demoted were considered. Figure 15 shows the

IDT: Intelligent Data Placement for Multi-tiered Main Memory with Reinforcement Learning HPDC ’24, June 3–7, 2024, Pisa, Italy

0

0.2

0.4

0.6

0.8

1
im

a
g

ic
k

d
e

e
p

s
je

n
g

b
w

a
v
e

s

ro
m

s

c
a

c
tu

B
S

S
N x
z

g
ra

p
h

5
0

0

b
fs p
r

A
V

G

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

All uppermost tier Two-tiered Multi-tiered

Figure 16: Performance variations under different memory
configurations with fixed RSS: uppermost tier expanded to fit
all RSS (All uppermost tier), upper two tiers expanded to fit
all RSS (Two-tiered), andmulti-tiered setting used in previous
evaluation sections (Multi-tiered).

1
.0

0

1

0

0.25

0.5

0.75

1

1.25

im
a

g
ic

k

d
e
e
p
s
je

n
g

b
w

a
v
e

s

ro
m

s

c
a

c
tu

B
S

S
N x
z

g
ra

p
h
5
0
0

b
fs p
r

A
V

G

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

AutoNUMA Tiering (MGLRU) IDT

Figure 17: Performance comparison in Two-tiered memory
configuration (higher is better)

high accuracy of PRP, 87% on average. The accuracy of PRP is partic-
ularly high in workloads with high memory access locality. Further,
workloads with higher accuracy showed more performance im-
provement in Figure 14. Thus, we can confirm that PRP is a simple
yet effective optimization technique to complement accessed-based
promotion.

5.7 Performance Variation to Tiered Memory
Configurations

We observed the performance of IDT varying the tiered memory
configuration with the workload’s RSS fixed to our evaluation set-
ting. We tested on three configurations: the uppermost tier mem-
ory’s capacity expanded to entirely fit all RSS (All uppermost tier),
a two-tiered memory setting where the capacity of tier0 and tier1
memory in Figure 10 were expanded to 64GB (Two-tiered), and a
multi-tiered memory setting used in previous evaluation sections
(Multi-tiered). Specifically, Two-tiered configuration allows each half
of the RSS to be distributed across the upper two tiers. The Multi-
tiered setting seeks 1/4 of the RSS to be distributed across the top
two tiers and the remainder in tier2. Performance was normalized
to the case of All uppermost tier. Figure 16 shows that in Two-tiered
configuration, IDT achieves an average 81.3% performance of All
uppermost tier.

aggregate_interval (ms) demote_wmark (%)

c
r
i
t
i
c
a
l
_
w
m
a
r
k

(
%
)

(a) Intervals (b) Watermarks

s
a
m
p
l
e
_
i
n
t
e
r
v
a
l

(m
s
)

Figure 18: Relative performance according to IDT ’s (a) inter-
val and (b) watermark values.

We also compared the overall performance of IDT and AutoN-
UMA Tiering (MGLRU) in Two-tiered memory configuration. Fig-
ure 17 shows that IDT achieves similar performance to AutoNUMA
Tiering (MGLRU) on average. Thus, we can confirm that IDT shows
comparable performance with the state-of-the-art solution even in
the two-tiered memory, while outperforming it in the multi-tiered
memory configuration as shown earlier.

5.8 Sensitivity Study
To investigate the sensitivity related to interval and watermark
values, we measured the average performance across three bench-
marks (bwaves, cactuBSSN, and pr) according to (a) 16 different
combinations of sample_interval and aggregate_interval, (b)
9 different combinations of demote_wmark and critical_wmark.
Smaller interval values allow finer sampling and more responsive
demotion/promotion, but at the cost of increased overhead. Larger
watermark values reserve fast memory for potential allocation re-
quests, but may not fully leverage the performance benefits of fast
memory. Figure 18 shows the relative performance for each combi-
nation against the best-performing configuration, which is used as
IDT’s default setting.

6 DISCUSSION
6.1 Reward Function Design
The performance of an RL model is significantly influenced by the
design of its reward function. A suitable reward function is one that
reflects the objectives of tiered memorymanagement, while the cost
of deriving its value is inexpensive. IDT’s reward function reflects
an appropriate demotion policy. Also, it uses data only obtained
from IDT’s memory access monitoring, thus reducing the cost of
deriving the reward value. However, before coming up with such a
function, we tried diverse designs based on promising intuitions.
Utilizing precise slow memory hit rate. IDT uses slow_hit,
which is the number of pages promoted by ARP, as a representa-
tion of slow memory access. Since slow_hit is an approximate
value, performance improvement may be expected when using an
accurately measured lower-tier memory access frequency. How-
ever, the precise slow memory access information is not readily
available in the default Linux kernel. To obtain such statistics, tools
like perf [1] should be used, which introduces additional overhead
to tiered memory management. Moreover, transferring perf mea-
surements to the RL model with low overhead at runtime [42] is
technically challenging to implement.

HPDC ’24, June 3–7, 2024, Pisa, Italy Juneseo Chang, Wanju Doh, Yaebin Moon, Eojin Lee, and Jung Ho Ahn

Maximizing demotion to promotion interval. A well-demoted
region should have a long demotion to promotion interval (DtoP).
Therefore, an ideal demotion should maximize the DtoP of the
promoted regions. Obtaining DtoP is relatively straightforward by
extending IDT’s memory access monitoring. However, this method
requires waiting for the demoted regions to be promoted again. This
results in a long-delayed reward, which is even more vulnerable to
a non-stationary environment [52] like memory management.

6.2 Limitations and Future Works
IDT’s limitation is its black-box nature of the RL model. While
it’s evident that the RL model enhances overall performance, the
inherent opacity of deep RL models makes it difficult to explain the
exact reasons for such improvement.

Another limitation is that IDT’s RL-based demotion policy op-
erates in the user space, whereas most kernel’s policies and mech-
anisms both reside within the kernel space. Meanwhile, there are
some recent studies to provide an ML framework for integrating
various ML algorithms in the kernel space [3]. Leveraging these
innovations, there is a potential for IDT’s RL model to be seamlessly
integrated inside the kernel.

A recent study [28] proposed selectively applying huge pages
according to data hotness for performance improvement. IDT is
orthogonal to this approach, thus performance improvement can
be expected from their methods. Additionally, future research may
explore other RL algorithms than PPO, or devise a sophisticated
feedback control mechanism for more effective demotion policy
autotuning.

7 RELATEDWORK
To the best of our knowledge, IDT is the first work to employ
RL in tiered memory management. IDT also distinguishes from
prior works that have attempted to integrate ML in this domain,
by boosting performance on an actual system. In this section, we
compare IDT with prior works.
OS-level tiered memory management. Numerous OS-level so-
lutions have been proposed to adaptively place hot pages in faster
memory and cold pages in slower memory [2, 7, 12, 15, 16, 19, 21–
23, 25, 27, 28, 28, 36, 38, 47, 48, 51, 55–57]. AutoNUMA Balanc-
ing [16], which is the default Linux kernel scheme, dynamically
adjusts data placement on NUMA systems by profiling NUMA fault
statistics. AutoNUMA Tiering [57] is an extension to AutoNUMA
Balancing by also considering the tier of the accessed memory. Au-
toNUMA Tiering can be extended to utilize MGLRU from the Linux
kernel v6.1 [58]. Intel Tiering [21] enhances AutoNUMA Tiering by
employing NUMA hinting fault statistics in the promotion mecha-
nism. TPP [36], a solution from Meta, further improves AutoNUMA
Tiering by adding hysteresis to promotion to prevent unnecessary
traffic. However, because the NUMA hinting fault is on the critical
path of memory access, these AutoNUMA-based schemes have high
hotness identification overhead [15, 28].

Intel Tiering and TPP were initially proposed for two-tiered mem-
ory, and extending them in the context of multi-tiered memory is
not straightforward. Before AutoNUMA Tiering effectively sup-
ported multi-tiered memory, AutoTiering [23] demonstrated effec-
tive demotion, promotion, and migration schemes between multiple

memory nodes. However, it often underperforms compared to two-
tiered solutions, as shown in §5.2. We believe this is due to the
increased complexity of managing multiple memory tiers.

In contrast, IDT not only supports multi-tiered memory but also
autonomously adjusts demotion criteria to effectively place data
across multiple memory tiers. This strategic placement results in
performance improvements compared to previous works.
ML-based data placement in tiered memory. Prior works that
utilized ML for tiered memory management employed online-
trained LSTM to analyze individual [12, 14, 34] or groups [13] of
pages’ access patterns for data placement. Others used Gaussian
Process bandits [15, 27] to optimize demotion parameters. However,
these studies often suffer from excessive increases in execution time
and memory usage [12–14, 34], or require substantial resources for
model training [15, 27]. In contrast, IDT employs RL with minimal
overhead, enhancing performance on an actual system.
RL-based system management. In storage systems, where la-
tency is less critical, numerous studies have employed RL for data
placement across multiple storage devices [32, 43, 50]. Furthermore,
RL has been explored for cache management [31], prefetching [6],
execution time estimation [10], power management [24], schedul-
ing [17], and congestion control [53]. Alongside these RL-based
system optimization works, IDT further showcases that tiered mem-
ory can also be adeptly managed using RL.

8 CONCLUSION
We present IDT, an RL/ML-based multi-tiered memory manage-
ment solution. We identified that RL can be effective at constructing
demotion policies, and how demotion can be formulated in a solv-
able form using RL. We also identified the need for a logical basis
in region-granularity memory access monitoring to provide an ac-
curate environment state to the RL model. Based on these analyses,
we developed memory access monitoring, demotion with RL-driven
policy autotuning, promotion to minimize slowmemory access, and
statistical testing-based region reconfiguration. Experiments on a
real-world multi-tiered memory system show that IDT consistently
outperforms the default Linux kernel by 2.08× on average, and
the state-of-the-art solution by 11.2%. We hope that IDT not only
offers an efficient solution for multi-tiered memory systems, but
also validates the feasibility of ML-based approaches in the realm
of tiered memory management.

ACKNOWLEDGMENTS
This paper was supported by SNU-SK hynix Solution Research Cen-
ter (S3RC), Korea Institute for Advancement of Technology (KIAT)
grant funded by the Korea Government (Ministry of Education)
(P0025681-G02P22450002201-10054408, Semiconductor-Specialized
University), and an Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Ko-
rea government (MSIT) (No. 2021-0-01343 and IITP-2023-RS-2023-
00256081). This work was done when Yaebin Moon was at Seoul
National University (SNU). Jung Ho Ahn, the corresponding author,
is with the Department of Intelligence and Information and the
Interdisciplinary Program in Artificial Intelligence, SNU.

IDT: Intelligent Data Placement for Multi-tiered Main Memory with Reinforcement Learning HPDC ’24, June 3–7, 2024, Pisa, Italy

REFERENCES
[1] 2023. Intel® 64 and ia-32 architectures software developer’s manual. Volume 3B:

System Programming Guide, Part (2023).
[2] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-

Transparent Page Management for Two-tiered Main Memory. In ASPLOS (Xi’an,
China). Association for Computing Machinery, New York, NY, USA, 631–644.
https://doi.org/10.1145/3037697.3037706

[3] Ibrahim Umit Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Velikov, and Erez
Zadok. 2021. A Machine Learning Framework to Improve Storage System Perfor-
mance. In Proceedings of the 13th ACM Workshop on Hot Topics in Storage and File
Systems (Virtual, USA) (HotStorage ’21). Association for Computing Machinery,
New York, NY, USA, 94–102. https://doi.org/10.1145/3465332.3470875

[4] James Alfred Ang, Brian W Barrett, Kyle Bruce Wheeler, and Richard C Murphy.
2010. Introducing the Graph 500. (2010).

[5] Scott Beamer, Krste Asanović, and David Patterson. 2017. The GAP Benchmark
Suite. arXiv:1508.03619 [cs.DC]

[6] Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas
Subramoney, and Onur Mutlu. 2021. Pythia: A Customizable Hardware Prefetch-
ing Framework Using Online Reinforcement Learning. In MICRO (Virtual Event,
Greece). Association for Computing Machinery, New York, NY, USA, 1121–1137.
https://doi.org/10.1145/3466752.3480114

[7] Shai Bergman, Priyank Faldu, Boris Grot, Lluís Vilanova, and Mark Silberstein.
2022. Reconsidering OS Memory Optimizations in the Presence of Disaggregated
Memory. In ISMM (San Diego, CA, USA). Association for Computing Machinery,
New York, NY, USA, 1–14. https://doi.org/10.1145/3520263.3534650

[8] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017:
Next-Generation Compute Benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering (Berlin, Germany) (ICPE
’18). Association for Computing Machinery, New York, NY, USA, 41–42. https:
//doi.org/10.1145/3185768.3185771

[9] CXL 3.0 2022. Compute Express Link. https://www.computeexpresslink.org.
[10] Nicolas Denoyelle, Swann Perarnau, Kamil Iskra, and Balazs Gerofi. 2022. Rapid

Execution Time Estimation for Heterogeneous Memory Systems Through Dif-
ferential Tracing. In High Performance Computing: 37th International Conference,
ISC High Performance 2022, Hamburg, Germany, May 29 – June 2, 2022, Pro-
ceedings (Hamburg, Germany). Springer-Verlag, Berlin, Heidelberg, 256–274.
https://doi.org/10.1007/978-3-031-07312-0_13

[11] Tonmoy Dey, Kento Sato, Bogdan Nicolae, Jian Guo, Jens Domke, Weikuan Yu,
Franck Cappello, and Kathryn Mohror. 2020. Optimizing Asynchronous Multi-
Level Checkpoint/Restart Configurations with Machine Learning. In 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
1036–1043. https://doi.org/10.1109/IPDPSW50202.2020.00174

[12] Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sudhanva Guru-
murthi, and Ada Gavrilovska. 2019. Kleio: A Hybrid Memory Page Scheduler
with Machine Intelligence. In Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing (Phoenix, AZ, USA)
(HPDC ’19). Association for Computing Machinery, New York, NY, USA, 37–48.
https://doi.org/10.1145/3307681.3325398

[13] Thaleia Dimitra Doudali and Ada Gavrilovska. 2022. Coeus: Clustering (A)like
Patterns for Practical Machine Intelligent Hybrid Memory Management. In 2022
22nd IEEE International Symposium on Cluster, Cloud and Internet Computing
(Taormina, Italy) (CCGrid ’22). 615–624. https://doi.org/10.1109/CCGrid54584.
2022.00071

[14] Thaleia Dimitra Doudali, Daniel Zahka, and Ada Gavrilovska. 2021. Cori: Dancing
to the Right Beat of Periodic Data Movements over Hybrid Memory Systems. In
2021 IEEE International Parallel and Distributed Processing Symposium (Portland,
OR, USA) (IPDPS ’21). 350–359. https://doi.org/10.1109/IPDPS49936.2021.00043

[15] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler, Zhiyi
Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela Mijailovic, Brian
Morris, Chiranjit Mukherjee, Jingliang Ren, Greg Thelen, Paul Turner, Carlos
Villavieja, Parthasarathy Ranganathan, and Amin Vahdat. 2023. Towards an
Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale. In
ASPLOS (Vancouver, BC, Canada). Association for Computing Machinery, New
York, NY, USA, 727–741. https://doi.org/10.1145/3582016.3582031

[16] Mel Gorman. 2012. Foundation for Automatic NUMA Balancing. https://lwn.net/
Articles/523065/.

[17] Nathan Grinsztajn, Olivier Beaumont, Emmanuel Jeannot, and Philippe Preux.
2021. READYS: A Reinforcement Learning Based Strategy for Heterogeneous
Dynamic Scheduling. In 2021 IEEE International Conference on Cluster Computing
(CLUSTER). 70–81. https://doi.org/10.1109/Cluster48925.2021.00031

[18] GUPS 2021. GUPS (Giga Updates Per Second). https://icl.utk.edu/projectsfiles/
hpcc/RandomAccess/.

[19] Taekyung Heo, Yang Wang, Wei Cui, Jaehyuk Huh, and Lintao Zhang. 2022.
Adaptive Page Migration Policy With Huge Pages in Tiered Memory Systems.
IEEE Trans. Comput. 71, 1 (2022), 53–68. https://doi.org/10.1109/TC.2020.3036686

[20] Amazon Inc. [n. d.]. Amazon EC2 High Memory Instances. https://aws.amazon.
com/ec2/instance-types/high-memory/.

[21] Intel. 2022. Tiering-0.8. https://git.kernel.org/pub/scm/linux/kernel/git/vishal/
tiering.git/.

[22] M. Jorda, S. Rai, E. Ayguade, J. Labarta, and A. J. Pena. 2022. ecoHMEM: Improving
Object Placement Methodology for Hybrid Memory Systems in HPC. In 2022
IEEE International Conference on Cluster Computing (CLUSTER). IEEE Computer
Society, Los Alamitos, CA, USA, 278–288. https://doi.org/10.1109/CLUSTER51413.
2022.00040

[23] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring the De-
sign Space of Page Management for Multi-Tiered Memory Systems. In USENIC
ATC (Virtual Event). USENIX Association, 715–728. https://www.usenix.org/
conference/atc21/presentation/kim-jonghyeon

[24] Seyeon Kim, Kyungmin Bin, Sangtae Ha, Kyunghan Lee, and Song Chong. 2021.
zTT: Learning-Based DVFS with Zero Thermal Throttling for Mobile Devices.
In Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services (Virtual Event, Wisconsin) (MobiSys ’21). Association
for Computing Machinery, New York, NY, USA, 41–53. https://doi.org/10.1145/
3458864.3468161

[25] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Hermes: a
heterogeneous-awaremulti-tiered distributed I/O buffering system. In Proceedings
of the 27th International Symposium on High-Performance Parallel and Distributed
Computing (Tempe, Arizona) (HPDC ’18). Association for Computing Machinery,
New York, NY, USA, 219–230. https://doi.org/10.1145/3208040.3208059

[26] Oliver Kramer. 2013. K-Nearest Neighbors. Springer Berlin Heidelberg, Berlin,
Heidelberg, 13–23.

[27] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.
2019. Software-Defined Far Memory in Warehouse-Scale Computers. In ASPLOS
(Providence, RI, USA). Association for Computing Machinery, New York, NY,
USA, 317–330. https://doi.org/10.1145/3297858.3304053

[28] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik Eom. 2023.
MEMTIS: Efficient Memory Tiering with Dynamic Page Classification and Page
Size Determination. In SOSP (Koblenz, Germany). Association for Computing
Machinery, New York, NY, USA, 17–34. https://doi.org/10.1145/3600006.3613167

[29] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-
berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLlib: Abstrac-
tions for Distributed Reinforcement Learning. In Proceedings of the 35th In-
ternational Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 3053–3062.
https://proceedings.mlr.press/v80/liang18b.html

[30] Linux community. 2023. migrate_pages() Function of Linux Kernel. https://elixir.
bootlin.com/linux/v6.0.19/source/mm/migrate.c#L1395.

[31] Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and Jun-
whan Ahn. 2020. An Imitation Learning Approach for Cache Replacement. In
Proceedings of the 37th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.).
PMLR, 6237–6247. https://proceedings.mlr.press/v119/liu20f.html

[32] Kaiyang Liu, Jun Peng, Jingrong Wang, Boyang Yu, Zhuofan Liao, Zhiwu Huang,
and Jianping Pan. 2022. A Learning-Based Data Placement Framework for Low
Latency in Data Center Networks. IEEE Transactions on Cloud Computing 10, 1
(2022), 146–157. https://doi.org/10.1109/TCC.2019.2940953

[33] Google LLC. [n. d.]. Memory-optimized machine family for Compute Engine.
https://cloud.google.com/compute/docs/memory-optimized-machines/.

[34] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard,
Kathryn S. McKinley, and Colin Raffel. 2020. Learning-Based Memory Allocation
for C++ Server Workloads. In ASPLOS (Lausanne, Switzerland). Association for
Computing Machinery, New York, NY, USA, 541–556. https://doi.org/10.1145/
3373376.3378525

[35] A. Maruf, A. Ghosh, J. Bhimani, D. Campello, A. Rudoff, and R. Rangaswami. 2022.
MULTI-CLOCK: Dynamic Tiering for Hybrid Memory Systems. In 2022 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE Computer Society, Los Alamitos, CA, USA, 925–937. https://doi.org/10.
1109/HPCA53966.2022.00072

[36] HasanAlMaruf, HaoWang, AbhishekDhanotia, JohannesWeiner, Niket Agarwal,
Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-Enabled
Tiered-Memory. In ASPLOS (Vancouver, BC, Canada). Association for Comput-
ing Machinery, New York, NY, USA, 742–755. https://doi.org/10.1145/3582016.
3582063

[37] H. Menon, A. Bhatele, and T. Gamblin. 2020. Auto-tuning Parameter Choices
in HPC Applications using Bayesian Optimization. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer Society,
Los Alamitos, CA, USA, 831–840. https://doi.org/10.1109/IPDPS47924.2020.00090

[38] Yaebin Moon, Wanju Doh, Kwanhee Kyung, Eojin Lee, and Jung Ho Ahn. 2023.
ADT: Aggressive Demotion and Promotion for Tiered Memory. IEEE Computer
Architecture Letters 22, 1 (2023), 21–24. https://doi.org/10.1109/LCA.2023.3236685

[39] Onur Mutlu and Lavanya Subramanian. 2014. Research Problems and Oppor-
tunities in Memory Systems. Supercomputing Frontiers and Innovations: An

https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1145/3465332.3470875
https://arxiv.org/abs/1508.03619
https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3520263.3534650
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://www.computeexpresslink.org
https://doi.org/10.1007/978-3-031-07312-0_13
https://doi.org/10.1109/IPDPSW50202.2020.00174
https://doi.org/10.1145/3307681.3325398
https://doi.org/10.1109/CCGrid54584.2022.00071
https://doi.org/10.1109/CCGrid54584.2022.00071
https://doi.org/10.1109/IPDPS49936.2021.00043
https://doi.org/10.1145/3582016.3582031
https://lwn.net/Articles/523065/
https://lwn.net/Articles/523065/
https://doi.org/10.1109/Cluster48925.2021.00031
https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/
https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/
https://doi.org/10.1109/TC.2020.3036686
https://aws.amazon.com/ec2/instance-types/high-memory/
https://aws.amazon.com/ec2/instance-types/high-memory/
https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/
https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/
https://doi.org/10.1109/CLUSTER51413.2022.00040
https://doi.org/10.1109/CLUSTER51413.2022.00040
https://www.usenix.org/conference/atc21/presentation/kim-jonghyeon
https://www.usenix.org/conference/atc21/presentation/kim-jonghyeon
https://doi.org/10.1145/3458864.3468161
https://doi.org/10.1145/3458864.3468161
https://doi.org/10.1145/3208040.3208059
https://doi.org/10.1145/3297858.3304053
https://doi.org/10.1145/3600006.3613167
https://proceedings.mlr.press/v80/liang18b.html
https://elixir.bootlin.com/linux/v6.0.19/source/mm/migrate.c##L1395
https://elixir.bootlin.com/linux/v6.0.19/source/mm/migrate.c##L1395
https://proceedings.mlr.press/v119/liu20f.html
https://doi.org/10.1109/TCC.2019.2940953
https://cloud.google.com/compute/docs/memory-optimized-machines/
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1109/HPCA53966.2022.00072
https://doi.org/10.1109/HPCA53966.2022.00072
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1109/IPDPS47924.2020.00090
https://doi.org/10.1109/LCA.2023.3236685

HPDC ’24, June 3–7, 2024, Pisa, Italy Juneseo Chang, Wanju Doh, Yaebin Moon, Eojin Lee, and Jung Ho Ahn

International Journal 1, 3 (oct 2014), 19–55. https://doi.org/10.14529/jsfi140302
[40] Alan Nair, Sandeep Kumar, Aravinda Prasad, Andy Rudoff, and Sreenivas Subra-

money. 2023. Telescope: Telemetry at Terabyte Scale. arXiv:2311.10275 [cs.OS]
[41] Nevine Nassif, Ashley O. Munch, Carleton L. Molnar, Gerald Pasdast, Sitara-

man V. Lyer, Zibing Yang, Oscar Mendoza, Mark Huddart, Srikrishnan Venkatara-
man, Sireesha Kandula, Rafi Marom, Alexandra M. Kern, Bill Bowhill, David R.
Mulvihill, Srikanth Nimmagadda, Varma Kalidindi, Jonathan Krause, Moham-
mad M. Haq, Roopali Sharma, and Kevin Duda. 2022. Sapphire Rapids: The Next-
Generation Intel Xeon Scalable Processor. In 2022 IEEE International Solid-State
Circuits Conference (ISSCC), Vol. 65. 44–46. https://doi.org/10.1109/ISSCC42614.
2022.9731107

[42] Aleix Roca Nonell, Balazs Gerofi, Leonardo Bautista-Gomez, Dominique Martinet,
Vicenç Beltran Querol, and Yutaka Ishikawa. 2018. On the Applicability of PEBS
based Online Memory Access Tracking for Heterogeneous Memory Management
at Scale. In Proceedings of the Workshop on Memory Centric High Performance
Computing (Dallas, TX, USA) (MCHPC’18). Association for ComputingMachinery,
New York, NY, USA, 50–57. https://doi.org/10.1145/3286475.3286477

[43] Lu Pang, Anis Alazzawe, Madhurima Ray, Krishna Kant, and Jeremy Swift. 2023.
Adaptive Intelligent Tiering for modern storage systems. Performance Evaluation
160 (2023), 102332. https://doi.org/10.1016/j.peva.2023.102332

[44] SeongJae Park. 2020. DAMON: Data Access Monitor. https://docs.kernel.org/mm/
damon/index.html.

[45] SeongJae Park, Madhuparna Bhowmik, and Alexandru Uta. 2022. DAOS: Data
Access-Aware Operating System. In Proceedings of the 31st International Sympo-
sium on High-Performance Parallel and Distributed Computing (Minneapolis, MN,
USA) (HPDC ’22). Association for Computing Machinery, New York, NY, USA,
4–15. https://doi.org/10.1145/3502181.3531466

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[47] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter. 2021.
HeMem: Scalable TieredMemoryManagement for Big Data Applications and Real
NVM. In SOSP (Virtual Event, Germany). Association for Computing Machinery,
New York, NY, USA, 392–407. https://doi.org/10.1145/3477132.3483550

[48] Jie Ren, Dong Xu, Ivy Peng, Junhee Ryu, Kwangsik Shin, Daewoo Kim, and Dong
Li. 2023. Rethinking Memory Profiling and Migration for Multi-Tiered Large
Memory Systems. arXiv:2302.09468

[49] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347

[50] Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gómez-Luna, Sander Stuijk, Henk Corporaal, and Onur
Mutlu. 2022. Sibyl: Adaptive and Extensible Data Placement in Hybrid Stor-
age Systems Using Online Reinforcement Learning. In ISCA (New York, New
York). Association for Computing Machinery, New York, NY, USA, 320–336.
https://doi.org/10.1145/3470496.3527442

[51] Kevin Song, Jiacheng Yang, Sihang Liu, and Gennady Pekhimenko.
2023. Lightweight Frequency-Based Tiering for CXL Memory Systems.
arXiv:2312.04789 [cs.DC]

[52] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT press.

[53] Chen Tessler, Yuval Shpigelman, Gal Dalal, Amit Mandelbaum, Doron Hari-
tan Kazakov, Benjamin Fuhrer, Gal Chechik, and Shie Mannor. 2022. Rein-
forcement Learning for Datacenter Congestion Control. SIGMETRICS Perfor-
mance Evaluation Review 49, 2 (jan 2022), 43–46. https://doi.org/10.1145/3512798.
3512815

[54] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang, Blaise
Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang, and Dim-
itrios Skarlatos. 2022. TMO: transparent memory offloading in datacenters. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’22). Association for Computing Machinery, New York, NY, USA, 609–621.
https://doi.org/10.1145/3503222.3507731

[55] Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan, and Ren
Wang. 2024. MATRYOSHKA: Non-Exclusive Memory Tiering via Transactional
Page Migration. arXiv preprint arXiv:2401.13154 (2024).

[56] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nimble
Page Management for Tiered Memory Systems. In ASPLOS (Providence, RI,
USA). Association for Computing Machinery, New York, NY, USA, 331–345.
https://doi.org/10.1145/3297858.3304024

[57] Huang Ying. 2020. AutoNUMA: Optimize Memory Placement for Memory Tiering
System. https://lwn.net/Articles/835402/.

[58] Yu Zhao. 2022. Multigenerational LRU Framework. https://lwn.net/Articles/
880393/.

https://doi.org/10.14529/jsfi140302
https://arxiv.org/abs/2311.10275
https://doi.org/10.1109/ISSCC42614.2022.9731107
https://doi.org/10.1109/ISSCC42614.2022.9731107
https://doi.org/10.1145/3286475.3286477
https://doi.org/10.1016/j.peva.2023.102332
https://docs.kernel.org/mm/damon/index.html
https://docs.kernel.org/mm/damon/index.html
https://doi.org/10.1145/3502181.3531466
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1145/3477132.3483550
https://arxiv.org/abs/2302.09468
https://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3470496.3527442
https://arxiv.org/abs/2312.04789
https://doi.org/10.1145/3512798.3512815
https://doi.org/10.1145/3512798.3512815
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/3297858.3304024
https://lwn.net/Articles/835402/
https://lwn.net/Articles/880393/
https://lwn.net/Articles/880393/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 OS Support for Tiered Memory Systems
	2.2 Challenges in Designing a Demotion Policy
	2.3 ML in Tiered Memory Management
	2.4 Region-granularity Memory Access Monitoring

	3 RL Formulation
	3.1 Problem Formulation
	3.2 Approximating Goal, State, and Action

	4 IDT: Design
	4.1 Memory Access Monitoring
	4.2 Demotion
	4.3 Promotion
	4.4 Region Reconfiguration

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance of IDT
	5.3 RL Effectiveness Analysis
	5.4 RL Overhead Analysis
	5.5 Memory Access Monitoring Effectiveness
	5.6 Predictive Region Promotion Accuracy
	5.7 Performance Variation to Tiered Memory Configurations
	5.8 Sensitivity Study

	6 Discussion
	6.1 Reward Function Design
	6.2 Limitations and Future Works

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

