IDT: Intelligent Data Placement for Multi-tiered
Main Memory with Reinforcement Learning

Juneseo ChangT, Wanju Doht, Yaebin Moon#,
Eojin Lee$, and Jung Ho AhnT

TSeoul National University, *Samsung Electronics, $ Inha University

Presenter: Juneseo Chang (jschang0215@snu.ac.kr)

*This work was done while at Seoul National University

mailto:jschang0215@snu.ac.kr

Tiered Memory Systems

« Emerging memory technologies are introducing multiple tiers in the main memory
— CXL Memory, HBM-enabled processors, Intel Optane DCPMM, ...

\
! \

HBM

Ll Y

| / DRAM \

/ CXL Memory Expander *

“

AY

4

4 Ay
’
’ AY

Intel Optane DCPMM

\
ll 3

Multi-tiered Main Memory

A
v

Capacity

OS-level Tiered Memory Management

« OS kernel manages data placement across tiers

Main memory

Upper Tier Lower Tier

OS-level Tiered Memory Management

« OS kernel manages data placement across tiers
« OS kernel demotes cold pages to lower-tier memory

Main memory

Upper Tier Lower Tier

Accurately identifying data hotness and effective demotion criteria are necessary!

OS-level Tiered Memory Management

« OS kernel manages data placement across tiers
« OS kernel demotes cold pages to lower-tier memory
« OS kernel promotes hot pages to upper-tier memory

Main memory

Upper Tier Lower Tier

Selecting Demotion Candidates: 2Q LRU and MGLRU

« Effective demotion candidate selection is crucial
—Impacts promotion
—Incorrectly identifying demotion targets causes ping-pong of demotion and promotion

* Prior works used Linux kernel's active/inactive LRU lists (2Q LRU)
— Since 2022, multi-generational LRU lists['l (MGLRU) for more fine-grained policy

https://lwn.net/Articles/880393/

Selecting Demotion Candidates: 2Q LRU and MGLRU

« However, 2Q LRU and MGLRU often deviate from the actual data hotness (PTE access bit scanning)

(V)]

wn

o

3

XZ

<

(SPEC) =
-)

=

>

(V)]

wn

o

©

©

<

©

cactuBSSN £
(SPEC) >

Execution Time Execution Time Execution Time
Actual Hotness
(PTE access bit) 2QLRU MGLRU

Selecting Demotion Candidates: 2Q LRU and MGLRU

« However, 2Q LRU and MGLRU often deviate from the actual data hotness (PTE access bit scanning)

Execution Time

Execution Time

(7))
(?p]
D
5
XZ

<

(SPEC) =
)
=
>
(7))
(?p]
o
©
©
<
©

cactuBSSN £ =+
(SPEC) > =

Execution Time

Actual Hotness
(PTE access bit)

2Q LRU

MGLRU

Selecting Demotion Candidates: 2Q LRU and MGLRU

« However, 2Q LRU and MGLRU often deviate from the actual data hotness (PTE access bit scanning)

(7))

(7))

o

<

XZ

(SPEC) f—g
-

=

>

(7))

(7))

o

©

©

<

©

cactuBSSN £
(SPEC) >

Execution Time Execution Time Execution Time
Actual Hotness
(PTE access bit) 2QLRU MGLRU

Selecting Demotion Candidates: Using more precise standards

freq

(frequency)

age
(recency)

Most pages are known to be cold
(not accessed for a few seconds) in
memory-intensive workloads!']

Pages with lower age are likely
to be used in the future

)

Select pages with
minimum freq

AND

age > age_thres

Selecting Demotion Candidates: Using more precise standards

freq v“ Minimum freq

AND

age

age > age thres

Selecting Demotion Candidates: Using more precise standards

freq Minimum freq AND age age > age_thres

> 1

S 08 -

©

QO |

O 06 -

o

2 o04-

©

S 0.2 A

-

>

O 0

0 200 400 200 400 0 200 400

age (ms) age (ms) age (ms)
Xz (SPEC) cactuBSSN (SPEC) bfs (GAPBS)

Cumulative probability distribution of accessed page’s age varies across workloads

Selecting Demotion Candidates: Using more precise standards

freq Minimum freq AND age age > age_thres

> |

S 08 -

©

@)

© 06 -

o

2 04 -

©

S 0.2 -

£

)

O 0 . . .

0 200 400 0 200 400 0 200 400
age (ms age (ms) age (ms)
age_thres? 9e (ms)

Xz (SPEC) cactuBSSN (SPEC) bfs (GAPBS)

Cumulative probability distribution of accessed page’s age varies across workloads

ML for Demotion Policy

Lightweight

Adaptability

Extensibility

Prior supervised learning
approaches have high
execution time overhead
and memory usage

Adapt to dynamic runtime
behavior with low overhead
(without full retraining)

Easily extend to support
multi-tiered memory

ML for Demotion Policy

Lightweight

Adaptability

Extensibility

Prior supervised learning
approaches have high
execution time overhead
and memory usage

Adapt to dynamic runtime
behavior with low overhead
(without full retraining)

Easily extend to support
multi-tiered memory

Reinforcement Learning

> Agent
State Reward Action
s(t) rit+1) a(t+1)

Environment

ML for Demotion Policy

Lower overhead than LSTM Reinforcement Learning

Lightweight [l or Banditl?! algorithms us

ed in prior works
« Agent
- Adapt to dynamic jl> State Reward Action
Adaptability environment s(t) rt+1) || alt+1)

Environment [«

Run inference for each
memory tier

Extensibility

!

ML for Demotion Policy

Lightweight

Adaptability

Extensibility

Lower overhead than LSTM
or Bandit algorithms used in
prior works

Adapt to dynamic
environment

Run inference for each
memory tier

Reinforcement Learning

Reward Action
r(t+1) a(t+1)

Environment

State: Memory access information of the system

Page granularity memory access monitoring has a high overhead

- Group similar pages with region-granularity monitoring

IDT: Design and Implementation

22

IDT: Overview

Workload

RL-based Demotion Policy

1
1
I
! Memory Access Monitoring
1
1

Multi-tiered Main Memory

Memory Access Monitoring

IDT Overview

Workload

RL-based Demotion Policy

1 1
1 1
1 1
1 1
1 1
1 1
1 1
i i
1 A 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Monitoring Info

Memory Access Monitoring Demote, Promote Mechanism

Tiered Memory

24

Region-granularity Monitoring

« Monitor group of pages with similar access patterns
— Partition Virtual Memory Area (VMA) into regions

________ VMA 1 > Region 1

| > Region 2
VAS | o VMA 2

........ > Region 3

"""" VMA 3 > Region 4

Region-granularity Monitoring

« Monitor group of pages with similar access patterns
— Partition Virtual Memory Area (VMA) into regions

« Sample 2 pages at each sample_interval

VMA 1

\ 4

VMA 2

\ 4

VMA 3

Region-granularity Monitoring

« Monitor group of pages with similar access patterns
— Partition Virtual Memory Area (VMA) into regions

« Sample 2 pages at each sample_interval
— Manage history, access, agell

VMA 1 . Region 1 —! |e]1]|e|oe]e|1]||access1 || age1|

o TTTTTTTTTTTTTmmmTm T i

> Region 2 —i |e|1]e|1|1]|0]| |access2 || age2 i
........ VM A 2 i:'_'.i
....... > Region3 — |o|1|e|e|1|0| | access3 || age3 E
...... F'rmm—
_ i |0|0|0|0|0]|1 access4 age4 i

"""" VMA 3 > Region 4 — :
------- €gIio i history access age !
L e e —————

Region Reconfiguration

« Merge or split adjacent regions for reconfiguration at each aggregate _interval
— Merge regions with similar access patterns to reduce monitoring overhead

Merge

VMA 1 >
VMA 2 >
VMA 3 ‘

Region Reconfiguration

« Merge or split adjacent regions for reconfiguration at each aggregate interval
— Merge regions with similar access patterns to reduce monitoring overhead
— Split when pages in a region have different access patterns

VMA 1 — —
VMA2 — Merge [—i
VMA 3 : Spllt _h;l:_'_'_'_'_'_'_'_'_'_'_'_':::::::::::::::::::::::::::::::::::::i

Assume similar pages are grouped in the same region

Sampling page’s information determines the similarity of regions

- Statistical testing problem (Infer population similarity with samples)

Region Reconfiguration: Merge

 Validate the similarity of region’s history vector by Fisher’s exact test with a 90% significance level

Accessed Not

Region i i - g

P: .
,i+1 (n)
Region (i + 1) A N- aj,q n aitaitq

window size = n

Region Reconfiguration: Merge

» Validate the similarity of region’s history vector by Fisher’s exact test with a 90% significance level

« Sliding window - Compare the access ratio of each region’s window

Accessed Not

Region i i - g

P: .
,i+1 (n)
Region (i + 1) A N- aj,q n aitaitq

window size = n

pl = ai/n
________ > Region i Mo|l1|lo|eje|1|e|1]|e|e]|e]| history
] vwa i< 0.
* Region (i +1) Moli1|e|eje|1]|e|1|e|e]|e]| history

Region Reconfiguration: Merge

» Validate the similarity of region’s history vector by Fisher’s exact test with a 90% significance level

« Sliding window - Compare the access ratio of each region’s window
— If every window yields a similar access ratio > Merge

Accessed Not

Region i i - g

P: .
,i+1 (n)
Region (i + 1) A N- aj,q n aitaitq

window size = n

A 4

VMA

\ 4
(Y
=
()
()
()
=
(A
=
()
(A
(A

Region i

Region Reconfiguration: Split

« Split region when the access status of the sampling pages differs at sample_ interval

\ 4

Split

Accessed!

\ 4

Not accessed!

RL-based Demotion Policy

IDT Overview

Workload
A
RL-based Demotion Policy

A

Monitoring Info Policy

\ 4
Memory Access Monitoring Demote, Promote Mechanism
+

Tiered Memory

RL: Recall

> Agent
IM;)nltOI'tl_ng Reward age_thres
n 02’?8 'on r(t+ 1) a(t + 1)

Environment

A

RL: Design

RL - Inference e _ Kernel
i © Get Action @ Get State | ——— E
i : i i Memory Access Monitoring i
i age Statistics [+ | !
! —_ i1 il Demotion Mechanism !
i | age_thres [+ argmax Moving Average |:i! | :
1 v R S % ;
i 4 PCA | i @ Update

i i | (Principal Component Analysis) | i ' demotion pollcy

RL: Design

RL - Inference e _ Kernel
i © Get Action @ Get State | ——— E
i : i i Memory Access Monitoring :
i age Statistics [| i
: —t i1 ! Demotion Mechanism |!
i | age_thres [« argmax Moving Average |i! |]
1 v - % ;
i 4 PCA | i @ Update
i t [(Principal Component Analysis) I i demotion policy
, Get stats after
Act tat (5
| ction a @ Save to the buffer State s | applying demotion policy
Experience Buffer « [demoted pages |
N 200 20 v TTTTTTTTTTMY - — " 4_
i State S Action A Reward R i|__slow hit |,
| ; ; ; | [
: Train and Update Inference Network : Reward Function
n_———————————————————————'| Rewardr Got R -
RL - Training @ Train when the experience buffer is full @ Get Rewar

r(t) = log(demoted _pages(t) / slow_hit(t))

RL: Detail

 Input Layer

— min, g1 (25 percentile), g2 (50 percentile), g3
(75 percentile), max age distribution

— 1x5 state vector

2 Hidden Layers
— 16, 32 nodes

Proximal Policy Optimizationl'l (PPO)
Training Algorithm

Experience buffer size: 4
— Trained every 4 inferences

Pre-train with GUPS microbenchmark
— 3 memory access patterns used in HeMem!?!

Implemented with PyTorch-based R11ib

argmax

[min, q1, g2,

g3, max]

with Moving Avg

and PCA

Experience buffer (size 4)

Train with PPO

RL: Example

R - e eNCe _ Kernel
© Get Action @ Get State | [e— i
i i i Memory Access Monltorlng :
, [2 59 16 72] |+ | !
! - T il . . !
' | age_thres il Demotion Mechanism :
| S <+« argmax 36917 79 b !
| (q3=17) J [;] e —— :
i 4 PCA | i @ Update
; L e A=) i+ demotion policy
. Get stats after
A = (5
| ction a=q3 @ Save to the buffer State s | applying demotion policy
Experience Buffer « [demoted=1024 |
i 2 2 S , A
i State S Action A Reward R |_slow hit=8 |
i ‘ ‘ * i 1
| S L e e [Roward =g LL=08(0024/8)
® Get Reward

RL - Training @ Train when the experience buffer is full

RL: Execution Phases

> demote_wmark

Kemel
i Memory Access Monitoring i
i Demotion/Promotion Candidate Migration i
Workload
—_— i i
Running i< demote_wmark i
L 4ms 2sec 4ms 2sec 300ms i
RLThread 1ynfer | Wait | Infer| Wait Train
on single CPU core
~ Y

4 Inferences

Theoretical Overhead: (4msx4+300ms)/(2sx4)=3.95% of a single core

Actual overhead: Average 1.35%, peak 3.75% of a single core

IDT Overview

Workload
A
RL-based Demotion Policy

A

Monitoring Info Policy

\ 4
Memory Access Monitoring Demote, Promote Mechanism
+

I
Tiered Memory

Demotion, Promotion Mechanism

Demotion

 When a memory node’s available space < demote_wmark (Setto 10%)

« Demote regions with age > age thres and minimum access

demoted_pages[0] demoted_pages[1]
I\/Iemory Hlerarchy i Node 0 Node 2 i i Node 1 Node 3 i
... | < demote_wmark 1< demote_wmark i
Node 0 i e s e i i i
_ (i L Lk L :
2 || Node 1 H T — I
3 {| © Demote o] i i
N Node 2 ! 1] deeedead]
! i 1| @ Demote i
Node 3 C—— - - - . - M m M _ m$m Y- __ M _ -

v

Promotion

 ARP (Accessed Region Promotion)
* PRP (Predictive Region Promotion)

Promotion: ARP (Accessed Region Promotion)

« Promote when demoted region is accessed
— Destination node should have available space > critical wmark (Setto 1%)

slow_hit[o]

Node 0 Node 2

> critical_wmark

Memory Hierarchy

Node 0] :’f“]—_'-'-'['-"".: o Demoted region
s N : L':::_::_::_‘I.! accessed!
2 ode 1 i
3 i | @ Promote
? || Node 2 i

<
Q

Q.
®

W
-

Promotion: PRP (Predictive Region Promotion)

* ARP does not promote until access to the region’s sampling pages is observed
— Preemptively promoting regions similar to ARP region may be beneficial

+ ldentify a similar region with k-Nearest Neighbor and promote

Promotion: PRP (Predictive Region Promotion)

* ARP does not promote until access to the region’s sampling pages is observed
— Preemptively promoting regions similar to ARP region may be beneficial

+ ldentify a similar region with k-Nearest Neighbor and promote

Upper Tier Lower Tier
@ PRP| o
i i_i'_-_-_]_:::_[::_:_i i
|@ArP -[i
|@Set as Query Ppint R :----------]---------------.}.----------__:

€ Set as Training Points

O Get PRP region Kernel

Promotion Candidate
Migration

K-Nearest Neighbor

distance = Normalized(vaddr distance) + Normalized(access_history distance)

More Details in the Paper

« Aggressive demotion
— Tighten demotion criteria when scarce fast memory

* Misplaced region promotion
— Handle promotion of regions demoted by kswapd

* RL formulation
— Problem formulation
— Approximation for feasible implementation

« Sensitivity study

IDT: Intelligent Data Placement for Multi-tiered Main Memory
with Reinforcement Learning

Juneseo Chang Wanju Doh Yaebin Moon
Seoul National University Seoul National University Samsung Electronics
South Korea South Korea South Korea
jschang0215@snu ac kr wj doh@scale.snu.ac kr yaebin moon@samsung.com

Eojin Lee
Inha University
South Korea
ejlee@inha.ac ke

ABSTRACT
To address the limitation of a DRAM-based single-tier in satisfying
the comprehensive demands of main memory, multi-tiered mem-
ory systems ning widespread adoption. To support these
systems, operating-system-level solutions that analyze the applica-
lion's memory access patlerns and ensure dala placement in the
appropriate memory tier have been vastly explored,

In this paper, we identify reinforcement learning (RL) s an effec-

tive solution for tiered memory management, and its policy can be
formulated in a solvable form using RL. We also demonstrate that an
effective region- granularity memory access monitoring method is
necessary to provide an accurate environment state te the RL model.
Thus, we propose IDT, an intelligent data placement for mulli-
ticred main memory. IDT incorporates an RL-based demotion policy
autotuning and a mechanism that efficiently demotes cold pages to
lawer-tier memory. INT also promotes hot pages to upper-tier mem-
ory to minimize access on slow memory, featuring a lightweight
‘machine learning algorithm. DT employs region-granularity mem-
ory access monitoring with statistical-lesting-based adjacent region
merge and split to improve precision and mitigate ambiguity ob-
served in prior works, Experiments on an actual four-tiered memory
system show that IDT achieves an average 2.08x speedup over the
default Linux kernel and 1 performance improvement com-
pared to the state-of-the-art solution.

CCS CONCEPTS

« Software and its engineering — Memory management; «

Computer systems organization — Helerogeneous (hybrid)
T

systems; - Computing methodologies — Rei learn-
ing
KEYWORDS

Memory Tiering, Emerging Memary Technologies, Memory Man-
agement, Reinforcement Learning

and that copies
ir Fponcrs

opyright heli by the owner/wuthoris)
40

Jung Ho Ahn
Seoul National University
South Korea
ajh@snu.ackr

ACM Reference Format:

Juneseo Chang. Wanju Doh, Yachin Moon. Eojin Lee, and Jung Ho Ahn.
2024 IDT. Intelligent Data Placement for Multi-tiered Main Memory with
Reinforcement Leatning, In The dind Ietemnational §
Performance Parallel and Distributed Computing (HPDC
Pisa, [taly. ACM. New York, NY, USA, 14 pages. https//
3625549.3658659

‘doi.org/10.1145¢

1 INTRODUCTION

The growing demand for memary-intensive workloads, such as
high-performance computing, graph analytics, and in-memory
databases, is highlighting the scaling limitations of a DRAM-based
single-tier main memory [39]. To tackle this issue, a variety of
memory types with diverse performance characteristics have been
adopted to compose tiered memory systems. Recently, the rising
interest in memories attached to Compute Express Link (CXIL-
Memory [9]hunderscores that the future lies in mulli-tiered memory
systems by integrating various heterogeneous memories with a
main-memory-like appearance ta a system [36]. Cloud vendars,

such as Amazon and Google, already serve large memory cloud
instances based on multi-tiered memory systems [20, 33]

y keen insight into an
application’s memory usage and placing the data in the proper
memary tier according ta its hotness. Thus, a number of prior stud-

ies have proposed operating-system-(05)-level solutions o improve
application performance by attentively exploiting the tiered mem-
ory system [2, 12, 15, 19, 23, 27, 36, 36, 48, 51, 55]. These OS-level
tiered memory solutions typically consist of dara placement to fully
leverage diverse memary types and memary access manitoring to
gather information for guiding data placement.

Data placement. Infrequently accessed pages in tiered memory
should be demoted to lower-tier slow memory for efficient utiliza-
tion of upper-tier fast memory. Moreover, to complement demotion,
haot pages trapped in slow memary should be identified and pro-
‘moted Lo upper-tier memory. Several prior studies have utilized the
Linux kernel's 202 LRU [19, 21, 35, 36, 56, 57] or multi-generational
LRU (MGLRU) [58] to determine demaotion candidates. However,
the data hotness identified by 2Q LRU or MGLRU often fails 10
flect the actual data hotness of the application. Therefore, precisely
tracking both acccss frequency and recency for cach page, and
establishing a demotion policy with solid criteria would be more
effective

 implementing this method presents the challenge of

Evaluation

50

Experimental Setup

« Based on Linux kernel v6.0.19
— Memory access monitoring developed with DAMON

* Multi-tiered memory setup
— 2 socket machine with DRAM (fast memory) and
Intel Optane DCPMM (slow memory)
« 4 State-of-the-art solutions for comparison
— Intel Tiering 0.8['], TPPI2], AutoTiering!3],
AutoNUMA Tiering (MGRLU)
« Workloads: SPEC CPU2017, graph500, GAPBS
— RSS set 96GB~110GB to facilitate using 3 tiers

« Evaluation metric: Speedup (execution time)
normalized against AutoNUMA Balancing

Socket 0 i Socket 1
CPU 0 Running i E CPU 1
DRAMO || DCPMM 0O DRAM 1 DCPMM 1
32GB 90ns| |256GB 275ns|i 1|32GB145ns| [256GB 340ns
Slower Latency |
DRAM O | DRAM 1 DCPMM 0O DCPMM 1
TierO Tier1 Tier2 Tier3

https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/
https://lwn.net/Articles/880393/

Performance

» Outperforms the best-performing state-of-the-art solution AutoNUMA Tiering (MGLRU)) by 11.2%

— Average 2.08x speedup against AutoNUMA Balancing

OlintelTiering OTPP ®@AutoTiering ®AutoNUMA Tiering (MGLRU)

@BIDT

imagick deepsjeng bwaves roms cactuBSSN XZ graph500 bfs

e e e e e e e

©
=

AVG

2.08

Limitations

« Other parameters (e.g. 10% and 1% watermarks, sliding window size) are not determined by RL (or ML)
— Our goal was to advance the state-of-the-art solution by appropriately utilizing RL (or ML)
— Future works may apply ML to optimize other parameters

« Blackbox: Difficult to explain clear reasons for performance improvement by using RL

Summary

Inaccurate data hotness
determined from 2Q/MGLRU

ML for selecting demotion
candidates

Statistical testing for
region-granularity monitoring

Summary

Inaccurate data hotness RL-based Demotion policy
determined from 2Q/MGLRU autotuning
ML for selecting demotion Fisher’s exact test
candidates) for region merge

Statistical testing for

. . L Predictive promotion
region-granularity monitoring

Outperforms the default Linux kernel by 2.08x, state-of-the-art solution by 11.2%

Thank you!

Contact the author: [schang0215@snu.ac.kr

mailto:jschang0215@snu.ac.kr

Thank you!

Contact the author: [schang0215@snu.ac.kr

mailto:jschang0215@snu.ac.kr

Backup

Backup Slides

58

Backup

RL Effectiveness

« RL outperforms against static age_thres
— When setting age_thres to g2, g3, max of age distribution (Potential RL actions)

1 -
(]
2 0.8 -
(qy]
£
L 0.6 -
()
o
o 04
©
& 02 T T T T T T
Q2 Q3 MAX IDT Q2 Q3 MAX IDT Q2 Q3 MAX IDT
Static Threshold Static Threshold Static Threshold

XZ cactuBSSN bfs

Backup

RL Effectiveness (cont’d)

« Performance variation on hyperparameters
— Learning rate (a): Improvement over a=0 shows efficacy of online training
— Exploration rate (¢): Improvement over e=1 shows effective than random policy
— Discount factor (y): Improvement over y=0 shows effective than only accounting immediate reward

4.2
4.1
4
3.9
3.8
3.7
3.6
3.5
3.4
0 0.01 0.05 0.1 O 005 01 0.2 1 0 0.5 0.9 1

Speedup

(a) Learning Rate (b) Exploration Rate (c) Discount Factor

cactuBSSN (SPEC)

Backup

Memory Access Monitoring Effectiveness

« Compare against applying DAMON!]
— Average history vector’'s hamming distance of merge region: 8.13 (DAMON) - 5.15 (IDT)

IDT-DAMON @IDT

o 1 7

2 05 - 1

: 2 Z é %

%>;O'9 7 % é Z Z

% mRR
imagick deepsjeng bwaves roms cactuBSSN XZ graph500 bfs

[1] SeongJae Park. 2020. DAMON: Data Access Monitor. https://docs.kernel.org/mm/damon/index.html.

AT

©
=

0.95

AVG

61

Backup

Predictive Region Promotion Effectiveness

» Compare against without PRP

0.95

0.9

Relative Performance

0.8

BWithout PRP BIDT

] 0.97

imagick

deepsjeng

bwaves

roms

cactuBSSN

XZ

graph500

bfs

pr

AVG

62

Backup

Predictive Region Promotion Effectiveness (cont’d)

» Compare against without PRP
— High PRP accuracy (ratio of region accessed that was promoted by PRP)

100.0 100.0

LT

imagick deepSJeng bwaves roms cactuBSSN XZ graph500

N
0)
|

(&)
o
|

PRP Accuracy (%)

N
@)
|

Backup

Two-tiered memory

» Performance on two-tiered memory configuration
— Set DRAM 0 (Tier 0) and DRAM 1 (Tier 1) to 64GB and RSS to 96GB~110GB
— Similar performance to AutoNUMA Tiering (MGRLU)

m AutoNUMA Tiering (MGLRU) @IDT

1.25

1.00

0.75

Relative Performance
=
(@)}

"

N

&)
|

o
|

imagick deepsjeng bwaves roms cactuBSSN XZ graph500 bfs pr AVG

Backup

Sensitivity Study

« Smaller interval: Finer sampling and responsive demotion/promotion
— but overhead increase

» Larger watermark: Reserve fast memory for potential allocation requests
— but may not fully leverage the performance benefits of fast memory

M 100 0.93 0.91 ~5

£ S

0] 0.91 0.86 ~

c T 2

@ s

c —

o ©

CIJI O 1

Y 0.89 0.93 0.87 0

3 [

® 500 1,000 2,000 5,000 v 5 10 20
aggregate_interval (ms) demote _wmark (%)

(a) Intervals (b) Watermarks

Backup

RL Pretraining

« Pre-trained using the Giga Update operations Per Second (GUPS) microbenchmark!'l with 100GB RSS
— Uniform random access: Random access over the working set
— Hot set: 90% of access on 4GB hot objects and the remaining uniform randomly
— Dynamic hot set: Change hot objects every 150-second intervals.

Backup

Aggressive Demotion

« If available space < critical wmark (Setto 1%)

* Tighten demotion candidate criteria Algorithm 1 Demotion in memory node nid

— age > age_thres
g BE_ max_access «— max{access(r) | r € regions(nid)}

min_access «<— min{access(r) | r € regions(nid)}
if capacity(nid) < aggressive_demote_wmark then
access_thres « (min_access + max_access) /2
Demote regions with:
age > age_thres and access < access_thres
if no demoted pages then
Try demote all regions
end if
else if capacity(nid) < demote_wmark then
10: Demote regions with:
age > age_thres and access < min_access
11: end if

— access < (min_access + max_access) / 2

ool oo

L e D

Backup

Misplaced Region Promotion

« IDT’s promotion may place region in suboptimal tier
* kswapd may demote in intensive memory usage

« Track by setting demoted flag when region is demoted
1. Detect misplaced region with demoted flag
2. Check upper-tier available space > critical wmark
3. Promote

Backup

Region Reconfiguration Methods

« DAMONI]
— Merge if access frequency difference less than 10% of the maximum frequency across all regions
— Split randomly

« MTMI
— Merge if access frequency difference less than 1/3 of total scan counts
— Split if two sampling page access status differ

Merge criteria is heuristic and requires magic number

https://docs.kernel.org/mm/damon/index.html

	Title
	슬라이드 1: IDT: Intelligent Data Placement for Multi-tiered Main Memory with Reinforcement Learning

	Background
	슬라이드 2: Tiered Memory Systems
	슬라이드 3: OS-level Tiered Memory Management
	슬라이드 4: OS-level Tiered Memory Management
	슬라이드 5: OS-level Tiered Memory Management
	슬라이드 6: Selecting Demotion Candidates: 2Q LRU and MGLRU
	슬라이드 7: Selecting Demotion Candidates: 2Q LRU and MGLRU
	슬라이드 8: Selecting Demotion Candidates: 2Q LRU and MGLRU
	슬라이드 9: Selecting Demotion Candidates: 2Q LRU and MGLRU
	슬라이드 10: Selecting Demotion Candidates: 2Q LRU and MGLRU
	슬라이드 11: Selecting Demotion Candidates: Using more precise standards
	슬라이드 12: Selecting Demotion Candidates: Using more precise standards
	슬라이드 13: Selecting Demotion Candidates: Using more precise standards
	슬라이드 14: Selecting Demotion Candidates: Using more precise standards
	슬라이드 15: Selecting Demotion Candidates: Using more precise standards
	슬라이드 16: ML for Demotion Policy
	슬라이드 17: ML for Demotion Policy
	슬라이드 18: ML for Demotion Policy
	슬라이드 19: ML for Demotion Policy
	슬라이드 20: ML for Demotion Policy
	슬라이드 21: ML for Demotion Policy

	IDT Overview
	슬라이드 22
	슬라이드 23: IDT: Overview

	Memory Access Monitoring
	슬라이드 24
	슬라이드 25: Region-granularity Monitoring
	슬라이드 26: Region-granularity Monitoring
	슬라이드 27: Region-granularity Monitoring
	슬라이드 28: Region Reconfiguration
	슬라이드 29: Region Reconfiguration
	슬라이드 30: Region Reconfiguration
	슬라이드 31: Region Reconfiguration: Merge
	슬라이드 32: Region Reconfiguration: Merge
	슬라이드 33: Region Reconfiguration: Merge
	슬라이드 34: Region Reconfiguration: Split

	RL
	슬라이드 35
	슬라이드 36: RL: Recall
	슬라이드 37: RL: Design
	슬라이드 38: RL: Design
	슬라이드 39: RL: Detail
	슬라이드 40: RL: Example
	슬라이드 41: RL: Execution Phases
	슬라이드 42: RL Execution Phases

	Demotion, Promotion
	슬라이드 43
	슬라이드 44: Demotion
	슬라이드 45: Promotion
	슬라이드 46: Promotion: ARP (Accessed Region Promotion)
	슬라이드 47: Promotion: PRP (Predictive Region Promotion)
	슬라이드 48: Promotion: PRP (Predictive Region Promotion)
	슬라이드 49: More Details in the Paper

	Result
	슬라이드 50
	슬라이드 51: Experimental Setup
	슬라이드 52: Performance
	슬라이드 53: Limitations
	슬라이드 54: Summary
	슬라이드 55: Summary
	슬라이드 56: Thank you!
	슬라이드 57: Thank you!

	Backup
	슬라이드 58
	슬라이드 59: RL Effectiveness
	슬라이드 60: RL Effectiveness (cont’d)
	슬라이드 61: Memory Access Monitoring Effectiveness
	슬라이드 62: Predictive Region Promotion Effectiveness
	슬라이드 63: Predictive Region Promotion Effectiveness (cont’d)
	슬라이드 64: Two-tiered memory
	슬라이드 65: Sensitivity Study
	슬라이드 66: RL Pretraining
	슬라이드 67: Aggressive Demotion
	슬라이드 68: Misplaced Region Promotion
	슬라이드 69: Region Reconfiguration Methods

