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• Emerging memory technologies are introducing multiple tiers in the main memory

─ CXL Memory, HBM-enabled processors, Intel Optane DCPMM, … 
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• OS kernel manages data placement across tiers
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• OS kernel manages data placement across tiers

• OS kernel demotes cold pages to lower-tier memory
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Accurately identifying data hotness and effective demotion criteria are necessary!



• OS kernel manages data placement across tiers

• OS kernel demotes cold pages to lower-tier memory

• OS kernel promotes hot pages to upper-tier memory
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• Effective demotion candidate selection is crucial

─ Impacts promotion

─ Incorrectly identifying demotion targets causes ping-pong of demotion and promotion

• Prior works used Linux kernel’s active/inactive LRU lists (2Q LRU)

─ Since 2022, multi-generational LRU lists[1] (MGLRU) for more fine-grained policy
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Selecting Demotion Candidates: 2Q LRU and MGLRU 

[1] Yu Zhao. 2022. Multigenerational LRU Framework. https://lwn.net/Articles/880393/.

https://lwn.net/Articles/880393/


• However, 2Q LRU and MGLRU often deviate from the actual data hotness (PTE access bit scanning)
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Selecting Demotion Candidates: Using more precise standards

freq
(frequency)

Most pages are known to be cold

(not accessed for a few seconds) in

memory-intensive workloads[1]

age
(recency)

Pages with lower age are likely

to be used in the future

Select pages with

minimum freq

age > age_thres

AND

[1]  Andres Lagar-Cavilla et al., “Software-Defined Far Memory in Warehouse-Scale Computers,” ASPLOS. 2019
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Selecting Demotion Candidates: Using more precise standards

freq Minimum freq age age > age_thresAND
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Selecting Demotion Candidates: Using more precise standards
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Selecting Demotion Candidates: Using more precise standards
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Selecting Demotion Candidates: Using more precise standards
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ML for Demotion Policy
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State: Memory access information of the system

Page granularity memory access monitoring has a high overhead

→ Group similar pages with region-granularity monitoring



IDT: Design and Implementation
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IDT: Overview
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Memory Access Monitoring
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Region-granularity Monitoring
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• Monitor group of pages with similar access patterns

─ Partition Virtual Memory Area (VMA) into regions

Region 1
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VMA 3
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Region-granularity Monitoring
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• Monitor group of pages with similar access patterns

─ Partition Virtual Memory Area (VMA) into regions

• Sample 2 pages at each sample_interval

Sample!

VMA 3

VMA 1

VMA 2



VMA 3

VMA 1

VMA 2

Region-granularity Monitoring
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• Monitor group of pages with similar access patterns

─ Partition Virtual Memory Area (VMA) into regions

• Sample 2 pages at each sample_interval

─ Manage history, access, age[1]

Region 1

Region 2

Region 3

Region 4

0 1 0 0 0 1 access1 age1

0 1 0 1 1 0 access2 age2

0 1 0 0 1 0 access3 age3

0 0 0 0 0 1 access4 age4

history access age

[1] SeongJae Park. 2020. DAMON: Data Access Monitor. https://docs.kernel.org/mm/damon/index.html.



VMA 3

VMA 1

VMA 2

Region Reconfiguration
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• Merge or split adjacent regions for reconfiguration at each aggregate_interval

─ Merge regions with similar access patterns to reduce monitoring overhead

Merge
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Region Reconfiguration
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• Merge or split adjacent regions for reconfiguration at each aggregate_interval

─ Merge regions with similar access patterns to reduce monitoring overhead

─ Split when pages in a region have different access patterns

Merge

Split



VMA 3
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Region Reconfiguration
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• Merge or split adjacent regions for reconfiguration at each aggregate_interval

─ Merge regions with similar access patterns to reduce monitoring overhead

─ Split when pages in a region have different access patterns

Merge

Split

Assume similar pages are grouped in the same region

Sampling page’s information determines the similarity of regions

→ Statistical testing problem (Infer population similarity with samples)



Region Reconfiguration: Merge
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• Validate the similarity of region’s history vector by Fisher’s exact test with a 90% significance level

Accessed Not Total

Region 𝑖 ai n - ai n

Region (𝑖 + 1) ai+1 n - ai+1 n

𝑃𝑖,𝑖+1 =

𝑛
𝑎𝑖

× 𝑛
𝑎𝑖+1

2𝑛
𝑎𝑖+𝑎𝑖+1

window size = n



0 1 0 0 0 1 0 1 0 0 0

0 1 0 0 0 1 0 1 0 0 0

Region Reconfiguration: Merge
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• Validate the similarity of region’s history vector by Fisher’s exact test with a 90% significance level

• Sliding window → Compare the access ratio of each region’s window

Accessed Not Total

Region 𝑖 ai n - ai n

Region (𝑖 + 1) ai+1 n - ai+1 n

𝑃𝑖,𝑖+1 =

𝑛
𝑎𝑖

× 𝑛
𝑎𝑖+1

2𝑛
𝑎𝑖+𝑎𝑖+1

pi = ai/n

pi+1 = ai+1/n

Pi,i+1 < 0.1

window size = n

VMA 

Region 𝑖

Region (𝑖 + 1)

history

history



Region Reconfiguration: Merge
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• Validate the similarity of region’s history vector by Fisher’s exact test with a 90% significance level

• Sliding window → Compare the access ratio of each region’s window

─ If every window yields a similar access ratio → Merge

Accessed Not Total

Region 𝑖 ai n - ai n

Region (𝑖 + 1) ai+1 n - ai+1 n

𝑃𝑖,𝑖+1 =

𝑛
𝑎𝑖

× 𝑛
𝑎𝑖+1

2𝑛
𝑎𝑖+𝑎𝑖+1

window size = n

0 1 0 0 0 1 0 1 0 0 0VMA Region 𝑖



Region Reconfiguration: Split
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• Split region when the access status of the sampling pages differs at sample_interval

Accessed!

Not accessed!

Split



RL-based Demotion Policy
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RL: Recall
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RL: Design
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…
… ㅈMoving Average
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KernelRL - Inference



RL: Design
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argmax ㅈq3

max

q2

age_thres

State s

Experience Buffer

Action a

slow_hit

demoted_pages

Reward r
Reward Function

RL - Training

State S Action A Reward R

Train and Update Inference Network

Demotion Mechanism

Memory Access Monitoring
Get State1Feed to network2Get Action3

Update 

demotion policy

4

Save to the buffer7
Get stats after 

applying demotion policy
5

Get Reward6
Train when the experience buffer is full8

…
… ㅈMoving Average

PCA
(Principal Component Analysis)

age Statistics

KernelRL - Inference

r(t) = log(demoted_pages(t) / slow_hit(t))demoted_pages(t) slow_hit(t)



RL: Detail
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• Input Layer

─ min, q1 (25 percentile), q2 (50 percentile), q3
(75 percentile), max age distribution

─ 1x5 state vector

• 2 Hidden Layers

─ 16, 32 nodes 

• Proximal Policy Optimization[1] (PPO)
Training Algorithm

• Experience buffer size: 4

─ Trained every 4 inferences

• Pre-train with GUPS microbenchmark

─ 3 memory access patterns used in HeMem[2]

• Implemented with PyTorch-based Rllib

[1] John Schulman et al., “Proximal Policy Optimization Algorithms.”, arXiv 2017

[2] Amanda Raybuck et al.,.”HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM.”, SOSP 2021

[min, q1, q2, 
q3, max]

with Moving Avg

and PCA

q2

q3

max

argmax

Train with PPO

…

Experience buffer (size 4)



RL: Example
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argmax ㅈq3

max

q2

age_thres

(q3=17)

slow_hit=8

demoted=1024

r=log(1024/8)

Demotion Mechanism

Memory Access Monitoring
Get State1Feed to network2Get Action3

Update 

demotion policy

4

State s

Experience Buffer

Action a=q3

Reward r=8

Save to the buffer7
Get stats after 

applying demotion policy
5

Get Reward6RL - Training

State S Action A Reward R

Train and Update Inference Network

Train when the experience buffer is full8

…
…

[3 6 9 17 79]

PCA
(Principal Component Analysis)

[2 5 9 16 72]

KernelRL - Inference



RL: Execution Phases
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RL Execution Phases
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Workload

Infer Wait Infer Wait … Train …

< demote_wmark > demote_wmark

RL Thread

4 Inferences

Running

Memory Access Monitoring

Demotion/Promotion Candidate Migration

Kernel

4ms 2sec 4ms 2sec 300ms

Theoretical Overhead: (4ms×4+300ms)/(2s×4)=3.95% of a single core

Actual overhead: Average 1.35%, peak 3.75% of a single core



Demotion, Promotion Mechanism
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Demotion
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Node 1 Node 3Node 0 Node 2
< demote_wmark < demote_wmark

Demotion Mechanism

Demotion Candidates1

Demote2
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Memory Hierarchy
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• Demote regions with age > age_thres and minimum access

demoted_pages[0] demoted_pages[1]

Kernel

RL 0 RL 1



Promotion
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• ARP (Accessed Region Promotion)

• PRP (Predictive Region Promotion)



Promotion: ARP (Accessed Region Promotion)
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• Promote when demoted region is accessed

─ Destination node should have available space > critical_wmark (Set to 1%)

slow_hit[0]

Kernel



Promotion: PRP (Predictive Region Promotion)
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• ARP does not promote until access to the region’s sampling pages is observed

─ Preemptively promoting regions similar to ARP region may be beneficial

• Identify a similar region with k-Nearest Neighbor and promote



Promotion: PRP (Predictive Region Promotion)
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Migration

distance = Normalized(vaddr distance) + Normalized(access_history distance)
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• ARP does not promote until access to the region’s sampling pages is observed

─ Preemptively promoting regions similar to ARP region may be beneficial

• Identify a similar region with k-Nearest Neighbor and promote

Kernel



More Details in the Paper

• Aggressive demotion

─ Tighten demotion criteria when scarce fast memory

• Misplaced region promotion

─ Handle promotion of regions demoted by kswapd

• RL formulation

─ Problem formulation

─ Approximation for feasible implementation

• Sensitivity study

49



Evaluation
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Experimental Setup

• Based on Linux kernel v6.0.19

─ Memory access monitoring developed with DAMON

• Multi-tiered memory setup

─ 2 socket machine with DRAM (fast memory) and 
Intel Optane DCPMM (slow memory)

• 4 State-of-the-art solutions for comparison

─ Intel Tiering 0.8[1], TPP[2], AutoTiering[3], 
AutoNUMA Tiering (MGRLU)[4]

• Workloads: SPEC CPU2017, graph500, GAPBS

─ RSS set 96GB~110GB to facilitate using 3 tiers 

• Evaluation metric: Speedup (execution time) 
normalized against AutoNUMA Balancing
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[1] Intel. 2022. Tiering-0.8. https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/.

[2] Hasan Al Maruf et al., “TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory,” ASPLOS, 2023

[3] Jonghyeon Kim et al., “Exploring the Design Space of Page Management for Multi-Tiered Memory Systems,” USENIC ATC (Virtual Event), 2021

[4] Yu Zhao. 2022. Multigenerational LRU Framework. https://lwn.net/Articles/880393/.

https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/
https://lwn.net/Articles/880393/


Performance

• Outperforms the best-performing state-of-the-art solution AutoNUMA Tiering (MGLRU)) by 11.2%

─ Average 2.08x speedup against AutoNUMA Balancing
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Limitations

• Other parameters (e.g. 10% and 1% watermarks, sliding window size) are not determined by RL (or ML)

─ Our goal was to advance the state-of-the-art solution by appropriately utilizing RL (or ML)

─ Future works may apply ML to optimize other parameters

• Blackbox: Difficult to explain clear reasons for performance improvement by using RL
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Summary
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Inaccurate data hotness

determined from 2Q/MGLRU

ML for selecting demotion

candidates

Statistical testing for

region-granularity monitoring



Summary
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RL-based Demotion policy

autotuning

Outperforms the default Linux kernel by 2.08×, state-of-the-art solution by 11.2%

Fisher’s exact test

for region merge

Predictive promotion

Inaccurate data hotness

determined from 2Q/MGLRU

ML for selecting demotion

candidates

Statistical testing for

region-granularity monitoring
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Backup Slides
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Backup



RL Effectiveness

• RL outperforms against static age_thres

─ When setting age_thres to q2, q3, max of age distribution (Potential RL actions)
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RL Effectiveness (cont’d)

• Performance variation on hyperparameters

─ Learning rate (𝛼): Improvement over 𝛼=0 shows efficacy of online training

─ Exploration rate (𝜖): Improvement over 𝜖=1 shows effective than random policy

─ Discount factor (𝛾): Improvement over  𝛾=0 shows effective than only accounting immediate reward
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Memory Access Monitoring Effectiveness

• Compare against applying DAMON[1]

─ Average history vector’s hamming distance of merge region: 8.13 (DAMON) → 5.15 (IDT)
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Backup

[1] SeongJae Park. 2020. DAMON: Data Access Monitor. https://docs.kernel.org/mm/damon/index.html.



Predictive Region Promotion Effectiveness

• Compare against without PRP
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Predictive Region Promotion Effectiveness (cont’d)

• Compare against without PRP

─ High PRP accuracy (ratio of region accessed that was promoted by PRP)
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Two-tiered memory

• Performance on two-tiered memory configuration

─ Set DRAM 0 (Tier 0) and DRAM 1 (Tier 1) to 64GB and RSS to 96GB~110GB

─ Similar performance to AutoNUMA Tiering (MGRLU)
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Sensitivity Study

• Smaller interval: Finer sampling and responsive demotion/promotion

─ but overhead increase

• Larger watermark: Reserve fast memory for potential allocation requests

─ but may not fully leverage the performance benefits of fast memory
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RL Pretraining

• Pre-trained using the Giga Update operations Per Second (GUPS) microbenchmark[1] with 100GB RSS

─ Uniform random access: Random access over the working set

─ Hot set: 90% of access on 4GB hot objects and the remaining uniform randomly

─ Dynamic hot set: Change hot objects every 150-second intervals.
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[1] Amanda Raybuck et al.,.”HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM.”, SOSP 2021



Aggressive Demotion

• If available space < critical_wmark (Set to 1%)

• Tighten demotion candidate criteria

─ age > age_thres

─ access < (min_access + max_access) / 2
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Misplaced Region Promotion

• IDT’s promotion may place region in suboptimal tier

• kswapd may demote in intensive memory usage

• Track by setting demoted flag when region is demoted

1. Detect misplaced region with demoted flag

2. Check upper-tier available space > critical_wmark

3. Promote
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Region Reconfiguration Methods

• DAMON[1]

─ Merge if access frequency difference less than 10% of the maximum frequency across all regions

─ Split randomly

• MTM[2]

─ Merge if access frequency difference less than 1/3 of total scan counts

─ Split if two sampling page access status differ
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[1] SeongJae Park. 2020. DAMON: Data Access Monitor. https://docs.kernel.org/mm/damon/index.html.

[2] Jie Ren et al., “MTM: Rethinking Memory Profiling and Migration for Multi-Tiered Large Memory Systems”, Eurosys 202Merge criteria is heuristic and requires magic number
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