
Juneseo Chang†, Wanju Doh†, Yaebin Moon‡,

Eojin Lee§, and Jung Ho Ahn†

†Seoul National University, ‡Samsung Electronics, § Inha University

Presenter: Juneseo Chang (jschang0215@snu.ac.kr)

‡This work was done while at Seoul National University

IDT: Intelligent Data Placement for Multi-tiered
Main Memory with Reinforcement Learning

mailto:jschang0215@snu.ac.kr

• Emerging memory technologies are introducing multiple tiers in the main memory

─ CXL Memory, HBM-enabled processors, Intel Optane DCPMM, …

2

Tiered Memory Systems

Cache

New memory

CPU

SSD

HDD

Capacity

New memory

DRAM

CXL Memory Expander

HBM

DRAM

Intel Optane DCPMM

Multi-tiered Main Memory

• OS kernel manages data placement across tiers

3

OS-level Tiered Memory Management

Upper Tier Lower Tier

Main memory

OS kernel

• OS kernel manages data placement across tiers

• OS kernel demotes cold pages to lower-tier memory

4

OS-level Tiered Memory Management

Upper Tier Lower Tier

Main memory

OS kernel

Accurately identifying data hotness and effective demotion criteria are necessary!

• OS kernel manages data placement across tiers

• OS kernel demotes cold pages to lower-tier memory

• OS kernel promotes hot pages to upper-tier memory

5

OS-level Tiered Memory Management

Upper Tier Lower Tier

Main memory

OS kernel

• Effective demotion candidate selection is crucial

─ Impacts promotion

─ Incorrectly identifying demotion targets causes ping-pong of demotion and promotion

• Prior works used Linux kernel’s active/inactive LRU lists (2Q LRU)

─ Since 2022, multi-generational LRU lists[1] (MGLRU) for more fine-grained policy

6

Selecting Demotion Candidates: 2Q LRU and MGLRU

[1] Yu Zhao. 2022. Multigenerational LRU Framework. https://lwn.net/Articles/880393/.

https://lwn.net/Articles/880393/

• However, 2Q LRU and MGLRU often deviate from the actual data hotness (PTE access bit scanning)

7

Selecting Demotion Candidates: 2Q LRU and MGLRU

cactuBSSN
(SPEC)

xz
(SPEC)

Active Inactive OldYoung

2Q LRU

Execution Time

MGLRU

Execution Time

V
ir

tu
a
l A

d
d
re

s
s

Actual Hotness
(PTE access bit)

Execution Time

V
ir

tu
a
l A

d
d
re

s
s

• However, 2Q LRU and MGLRU often deviate from the actual data hotness (PTE access bit scanning)

8

Selecting Demotion Candidates: 2Q LRU and MGLRU

cactuBSSN
(SPEC)

xz
(SPEC)

Active Inactive OldYoung

2Q LRU

Execution Time

MGLRU

Execution Time

V
ir

tu
a
l A

d
d
re

s
s

Actual Hotness
(PTE access bit)

Execution Time

V
ir

tu
a
l A

d
d
re

s
s

• However, 2Q LRU and MGLRU often deviate from the actual data hotness (PTE access bit scanning)

9

Selecting Demotion Candidates: 2Q LRU and MGLRU

cactuBSSN
(SPEC)

xz
(SPEC)

Active Inactive OldYoung

2Q LRU

Execution Time

MGLRU

Execution Time

V
ir

tu
a
l A

d
d
re

s
s

Actual Hotness
(PTE access bit)

Execution Time

V
ir

tu
a
l A

d
d
re

s
s

• However, 2Q LRU and MGLRU often deviate from the actual data hotness (PTE access bit scanning)

10

Selecting Demotion Candidates: 2Q LRU and MGLRU

cactuBSSN
(SPEC)

xz
(SPEC)

Active Inactive OldYoung

2Q LRU

Execution Time

MGLRU

Execution Time

V
ir

tu
a
l A

d
d
re

s
s

Actual Hotness
(PTE access bit)

Execution Time

V
ir

tu
a
l A

d
d
re

s
s

11

Selecting Demotion Candidates: Using more precise standards

freq
(frequency)

Most pages are known to be cold

(not accessed for a few seconds) in

memory-intensive workloads[1]

age
(recency)

Pages with lower age are likely

to be used in the future

Select pages with

minimum freq

age > age_thres

AND

[1] Andres Lagar-Cavilla et al., “Software-Defined Far Memory in Warehouse-Scale Computers,” ASPLOS. 2019

12

Selecting Demotion Candidates: Using more precise standards

freq Minimum freq age age > age_thresAND

13

Selecting Demotion Candidates: Using more precise standards

freq Minimum freq age age > age_thresAND

Cumulative probability distribution of accessed page’s age varies across workloads

xz (SPEC) cactuBSSN (SPEC) bfs (GAPBS)

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

0

0.2

0.4

0.6

0.8

1

0 200 400

age (ms)

0 200 400

age (ms)

0 200 400

age (ms)

14

Selecting Demotion Candidates: Using more precise standards

freq Minimum freq age age > age_thresAND

xz (SPEC) cactuBSSN (SPEC) bfs (GAPBS)

0

0.2

0.4

0.6

0.8

1

0 200 400

age (ms)

0 200 400

age (ms)

0 200 400

age (ms)
age_thres?

Cumulative probability distribution of accessed page’s age varies across workloads

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

15

Selecting Demotion Candidates: Using more precise standards

freq Minimum freq age age > age_thresAND

xz (SPEC) cactuBSSN (SPEC) bfs (GAPBS)

0

0.2

0.4

0.6

0.8

1

0 200 400

age (ms)

0 200 400

age (ms)

0 200 400

age (ms)
age_thres?

Cumulative probability distribution of accessed page’s age varies across workloads

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

16

ML for Demotion Policy

Lightweight

Prior supervised learning

approaches have high

execution time overhead

and memory usage

Adaptability

Adapt to dynamic runtime

behavior with low overhead

(without full retraining)

Extensibility
Easily extend to support

multi-tiered memory

17

ML for Demotion Policy

Lightweight

Prior supervised learning

approaches have high

execution time overhead

and memory usage

Adaptability

Adapt to dynamic runtime

behavior with low overhead

(without full retraining)

Extensibility
Easily extend to support

multi-tiered memory

Reinforcement Learning

Agent

Environment

Reward

𝒓 𝒕 + 𝟏
State

𝒔 𝒕
Action

𝒂 𝒕 + 𝟏

Policy trained by Training Algorithm

18

ML for Demotion Policy

Lightweight

Lower overhead than LSTM
[1] or Bandit[2] algorithms us

ed in prior works

Adaptability
Adapt to dynamic

environment

Extensibility
Run inference for each

memory tier

Reinforcement Learning

Agent

Environment

Reward

𝒓 𝒕 + 𝟏
State

𝒔 𝒕
Action

𝒂 𝒕 + 𝟏

Policy trained by Training Algorithm

[1] Thaleia Dimitra Doudali et al., “Kleio: A Hybrid Memory Page Scheduler with Machine Intelligence,” HPDC, 2019

[2] Andres Lagar-Cavilla et al., “Software-Defined Far Memory in Warehouse-Scale Computers,” ASPLOS. 2019

19

ML for Demotion Policy

Lightweight

Lower overhead than LSTM
[1] or Bandit[2] algorithms us

ed in prior works

Adaptability
Adapt to dynamic

environment

Extensibility
Run inference for each

memory tier

Reinforcement Learning

Agent

Environment

Reward

𝒓 𝒕 + 𝟏
State

𝒔 𝒕
Action

𝒂 𝒕 + 𝟏

Policy trained by Training Algorithm

[1] Thaleia Dimitra Doudali et al., “Kleio: A Hybrid Memory Page Scheduler with Machine Intelligence,” HPDC, 2019

[2] Andres Lagar-Cavilla et al., “Software-Defined Far Memory in Warehouse-Scale Computers,” ASPLOS. 2019

20

ML for Demotion Policy

Lightweight

Lower overhead than LSTM

or Bandit algorithms used in

prior works

Adaptability
Adapt to dynamic

environment

Extensibility
Run inference for each

memory tier

Reinforcement Learning

Agent

Environment

Reward

𝒓 𝒕 + 𝟏
State

𝒔 𝒕
Action

𝒂 𝒕 + 𝟏

Policy trained by Training Algorithm

21

ML for Demotion Policy

Lightweight

Lower overhead than LSTM

or Bandit algorithms used in

prior works

Adaptability
Adapt to dynamic

environment

Extensibility
Run inference for each

memory tier

Reinforcement Learning

Agent

Environment

Reward

𝒓 𝒕 + 𝟏
State

𝒔 𝒕
Action

𝒂 𝒕 + 𝟏

Policy trained by Training Algorithm

State: Memory access information of the system

Page granularity memory access monitoring has a high overhead

→ Group similar pages with region-granularity monitoring

IDT: Design and Implementation

22

IDT: Overview

23

Kernel

Workload

Demote, Promote Mechanism

Policy

User

Monitoring Info

RL-based Demotion Policy

Multi-tiered Main Memory

Memory Access Monitoring

Memory Access Monitoring

24

RL-based Demotion Policy

Tiered Memory

Memory Access Monitoring Demote, Promote Mechanism

Monitoring Info Policy

Workload

IDT Overview

Region-granularity Monitoring

25

• Monitor group of pages with similar access patterns

─ Partition Virtual Memory Area (VMA) into regions

Region 1

Region 2

Region 3

Region 4

VAS

VMA 3

VMA 1

VMA 2

Region-granularity Monitoring

26

• Monitor group of pages with similar access patterns

─ Partition Virtual Memory Area (VMA) into regions

• Sample 2 pages at each sample_interval

Sample!

VMA 3

VMA 1

VMA 2

VMA 3

VMA 1

VMA 2

Region-granularity Monitoring

27

• Monitor group of pages with similar access patterns

─ Partition Virtual Memory Area (VMA) into regions

• Sample 2 pages at each sample_interval

─ Manage history, access, age[1]

Region 1

Region 2

Region 3

Region 4

0 1 0 0 0 1 access1 age1

0 1 0 1 1 0 access2 age2

0 1 0 0 1 0 access3 age3

0 0 0 0 0 1 access4 age4

history access age

[1] SeongJae Park. 2020. DAMON: Data Access Monitor. https://docs.kernel.org/mm/damon/index.html.

VMA 3

VMA 1

VMA 2

Region Reconfiguration

28

• Merge or split adjacent regions for reconfiguration at each aggregate_interval

─ Merge regions with similar access patterns to reduce monitoring overhead

Merge

VMA 3

VMA 1

VMA 2

Region Reconfiguration

29

• Merge or split adjacent regions for reconfiguration at each aggregate_interval

─ Merge regions with similar access patterns to reduce monitoring overhead

─ Split when pages in a region have different access patterns

Merge

Split

VMA 3

VMA 1

VMA 2

Region Reconfiguration

30

• Merge or split adjacent regions for reconfiguration at each aggregate_interval

─ Merge regions with similar access patterns to reduce monitoring overhead

─ Split when pages in a region have different access patterns

Merge

Split

Assume similar pages are grouped in the same region

Sampling page’s information determines the similarity of regions

→ Statistical testing problem (Infer population similarity with samples)

Region Reconfiguration: Merge

31

• Validate the similarity of region’s history vector by Fisher’s exact test with a 90% significance level

Accessed Not Total

Region 𝑖 ai n - ai n

Region (𝑖 + 1) ai+1 n - ai+1 n

𝑃𝑖,𝑖+1 =

𝑛
𝑎𝑖

× 𝑛
𝑎𝑖+1

2𝑛
𝑎𝑖+𝑎𝑖+1

window size = n

0 1 0 0 0 1 0 1 0 0 0

0 1 0 0 0 1 0 1 0 0 0

Region Reconfiguration: Merge

32

• Validate the similarity of region’s history vector by Fisher’s exact test with a 90% significance level

• Sliding window → Compare the access ratio of each region’s window

Accessed Not Total

Region 𝑖 ai n - ai n

Region (𝑖 + 1) ai+1 n - ai+1 n

𝑃𝑖,𝑖+1 =

𝑛
𝑎𝑖

× 𝑛
𝑎𝑖+1

2𝑛
𝑎𝑖+𝑎𝑖+1

pi = ai/n

pi+1 = ai+1/n

Pi,i+1 < 0.1

window size = n

VMA

Region 𝑖

Region (𝑖 + 1)

history

history

Region Reconfiguration: Merge

33

• Validate the similarity of region’s history vector by Fisher’s exact test with a 90% significance level

• Sliding window → Compare the access ratio of each region’s window

─ If every window yields a similar access ratio → Merge

Accessed Not Total

Region 𝑖 ai n - ai n

Region (𝑖 + 1) ai+1 n - ai+1 n

𝑃𝑖,𝑖+1 =

𝑛
𝑎𝑖

× 𝑛
𝑎𝑖+1

2𝑛
𝑎𝑖+𝑎𝑖+1

window size = n

0 1 0 0 0 1 0 1 0 0 0VMA Region 𝑖

Region Reconfiguration: Split

34

• Split region when the access status of the sampling pages differs at sample_interval

Accessed!

Not accessed!

Split

RL-based Demotion Policy

35

RL-based Demotion Policy

Tiered Memory

Memory Access Monitoring Demote, Promote Mechanism

Monitoring Info Policy

Workload

IDT Overview

RL: Recall

36

Agent

Environment

Reward

𝑟 𝑡 + 1

Monitoring

Information

𝑠 𝑡

age_thres
𝑎 𝑡 + 1

RL: Design

37

argmax ㅈq3

max

q2

age_thres
Demotion Mechanism

Memory Access Monitoring
Get State1Feed to network2Get Action3

Update

demotion policy

4

…
… ㅈMoving Average

PCA
(Principal Component Analysis)

age Statistics

KernelRL - Inference

RL: Design

38

argmax ㅈq3

max

q2

age_thres

State s

Experience Buffer

Action a

slow_hit

demoted_pages

Reward r
Reward Function

RL - Training

State S Action A Reward R

Train and Update Inference Network

Demotion Mechanism

Memory Access Monitoring
Get State1Feed to network2Get Action3

Update

demotion policy

4

Save to the buffer7
Get stats after

applying demotion policy
5

Get Reward6
Train when the experience buffer is full8

…
… ㅈMoving Average

PCA
(Principal Component Analysis)

age Statistics

KernelRL - Inference

r(t) = log(demoted_pages(t) / slow_hit(t))demoted_pages(t) slow_hit(t)

RL: Detail

39

• Input Layer

─ min, q1 (25 percentile), q2 (50 percentile), q3
(75 percentile), max age distribution

─ 1x5 state vector

• 2 Hidden Layers

─ 16, 32 nodes

• Proximal Policy Optimization[1] (PPO)
Training Algorithm

• Experience buffer size: 4

─ Trained every 4 inferences

• Pre-train with GUPS microbenchmark

─ 3 memory access patterns used in HeMem[2]

• Implemented with PyTorch-based Rllib

[1] John Schulman et al., “Proximal Policy Optimization Algorithms.”, arXiv 2017

[2] Amanda Raybuck et al.,.”HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM.”, SOSP 2021

[min, q1, q2,
q3, max]

with Moving Avg

and PCA

q2

q3

max

argmax

Train with PPO

…

Experience buffer (size 4)

RL: Example

40

argmax ㅈq3

max

q2

age_thres

(q3=17)

slow_hit=8

demoted=1024

r=log(1024/8)

Demotion Mechanism

Memory Access Monitoring
Get State1Feed to network2Get Action3

Update

demotion policy

4

State s

Experience Buffer

Action a=q3

Reward r=8

Save to the buffer7
Get stats after

applying demotion policy
5

Get Reward6RL - Training

State S Action A Reward R

Train and Update Inference Network

Train when the experience buffer is full8

…
…

[3 6 9 17 79]

PCA
(Principal Component Analysis)

[2 5 9 16 72]

KernelRL - Inference

RL: Execution Phases

41

Workload

Infer Wait Infer Wait … Train …

< demote_wmark > demote_wmark

RL Thread
on single CPU core

4 Inferences

Running

Memory Access Monitoring

Demotion/Promotion Candidate Migration

Kernel

4ms 2sec 4ms 2sec 300ms

RL Execution Phases

42

Workload

Infer Wait Infer Wait … Train …

< demote_wmark > demote_wmark

RL Thread

4 Inferences

Running

Memory Access Monitoring

Demotion/Promotion Candidate Migration

Kernel

4ms 2sec 4ms 2sec 300ms

Theoretical Overhead: (4ms×4+300ms)/(2s×4)=3.95% of a single core

Actual overhead: Average 1.35%, peak 3.75% of a single core

Demotion, Promotion Mechanism

43

RL-based Demotion Policy

Tiered Memory

Memory Access Monitoring Demote, Promote Mechanism

Monitoring Info Policy

Workload

IDT Overview

Demotion

44

Node 1 Node 3Node 0 Node 2
< demote_wmark < demote_wmark

Demotion Mechanism

Demotion Candidates1

Demote2

Demote3

Update stats4

Node 0

Node 2

Node 1

Node 3

S
lo

w
e

r

Memory Hierarchy

• When a memory node’s available space < demote_wmark (Set to 10%)

• Demote regions with age > age_thres and minimum access

demoted_pages[0] demoted_pages[1]

Kernel

RL 0 RL 1

Promotion

45

• ARP (Accessed Region Promotion)

• PRP (Predictive Region Promotion)

Promotion: ARP (Accessed Region Promotion)

46

Node 1 Node 3Node 0 Node 2
> critical_wmark

Promotion Mechanism

Demoted region

accessed!
1

Promote2

Update stats3

Node 0

Node 2

Node 1

Node 3

S
lo

w
e

r

Memory Hierarchy

• Promote when demoted region is accessed

─ Destination node should have available space > critical_wmark (Set to 1%)

slow_hit[0]

Kernel

Promotion: PRP (Predictive Region Promotion)

47

• ARP does not promote until access to the region’s sampling pages is observed

─ Preemptively promoting regions similar to ARP region may be beneficial

• Identify a similar region with k-Nearest Neighbor and promote

Promotion: PRP (Predictive Region Promotion)

48

ARP1

Lower Tier

Set as Query Point2

Upper Tier
PRP5

Set as Training Points3

Get PRP region4

K-Nearest Neighbor
Promotion Candidate

Migration

distance = Normalized(vaddr distance) + Normalized(access_history distance)

Spatial Locality Temporal Locality

• ARP does not promote until access to the region’s sampling pages is observed

─ Preemptively promoting regions similar to ARP region may be beneficial

• Identify a similar region with k-Nearest Neighbor and promote

Kernel

More Details in the Paper

• Aggressive demotion

─ Tighten demotion criteria when scarce fast memory

• Misplaced region promotion

─ Handle promotion of regions demoted by kswapd

• RL formulation

─ Problem formulation

─ Approximation for feasible implementation

• Sensitivity study

49

Evaluation

50

Experimental Setup

• Based on Linux kernel v6.0.19

─ Memory access monitoring developed with DAMON

• Multi-tiered memory setup

─ 2 socket machine with DRAM (fast memory) and
Intel Optane DCPMM (slow memory)

• 4 State-of-the-art solutions for comparison

─ Intel Tiering 0.8[1], TPP[2], AutoTiering[3],
AutoNUMA Tiering (MGRLU)[4]

• Workloads: SPEC CPU2017, graph500, GAPBS

─ RSS set 96GB~110GB to facilitate using 3 tiers

• Evaluation metric: Speedup (execution time)
normalized against AutoNUMA Balancing

51

DRAM 1
145ns

DCPMM 1
340ns

Socket 1

CPU 1

DRAM 0

Tier0

DCPMM 0

Tier2

DRAM 1

Tier1

DCPMM 1

Tier3

Slower Latency

CPU 0 Running

DRAM 0
90ns

DCPMM 0
275ns

Socket 0

32GB 32GB256GB 256GB

[1] Intel. 2022. Tiering-0.8. https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/.

[2] Hasan Al Maruf et al., “TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory,” ASPLOS, 2023

[3] Jonghyeon Kim et al., “Exploring the Design Space of Page Management for Multi-Tiered Memory Systems,” USENIC ATC (Virtual Event), 2021

[4] Yu Zhao. 2022. Multigenerational LRU Framework. https://lwn.net/Articles/880393/.

https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/
https://lwn.net/Articles/880393/

Performance

• Outperforms the best-performing state-of-the-art solution AutoNUMA Tiering (MGLRU)) by 11.2%

─ Average 2.08x speedup against AutoNUMA Balancing

52

1
.4

8
1

.4
8

1

.5
4

1

.8
7

2

.0
8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

imagick
(11557.26s)

deepsjeng
(1749.62s)

bwaves
(13126.74s)

roms
(43564.62s)

cactuBSSN
(22963.61s)

xz
(4959.5s)

graph500
(1818.98s)

bfs
(1085.99s)

pr
(4951.29s)

AVG

S
p
e

e
d

u
p

IntelTiering TPP AutoTiering AutoNUMA Tiering (MGLRU) IDT

Limitations

• Other parameters (e.g. 10% and 1% watermarks, sliding window size) are not determined by RL (or ML)

─ Our goal was to advance the state-of-the-art solution by appropriately utilizing RL (or ML)

─ Future works may apply ML to optimize other parameters

• Blackbox: Difficult to explain clear reasons for performance improvement by using RL

53

Summary

54

Inaccurate data hotness

determined from 2Q/MGLRU

ML for selecting demotion

candidates

Statistical testing for

region-granularity monitoring

Summary

55

RL-based Demotion policy

autotuning

Outperforms the default Linux kernel by 2.08×, state-of-the-art solution by 11.2%

Fisher’s exact test

for region merge

Predictive promotion

Inaccurate data hotness

determined from 2Q/MGLRU

ML for selecting demotion

candidates

Statistical testing for

region-granularity monitoring

Thank you!
Contact the author: jschang0215@snu.ac.kr

mailto:jschang0215@snu.ac.kr

Thank you!
Contact the author: jschang0215@snu.ac.kr

mailto:jschang0215@snu.ac.kr

Backup Slides

58

Backup

RL Effectiveness

• RL outperforms against static age_thres

─ When setting age_thres to q2, q3, max of age distribution (Potential RL actions)

59

Backup

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

xz cactuBSSN bfs

Q2 Q3 MAX IDT

Static Threshold

0.2

0.4

0.6

0.8

1

Q2 Q3 MAX IDT

Static Threshold

Q2 Q3 MAX IDT

Static Threshold

RL Effectiveness (cont’d)

• Performance variation on hyperparameters

─ Learning rate (𝛼): Improvement over 𝛼=0 shows efficacy of online training

─ Exploration rate (𝜖): Improvement over 𝜖=1 shows effective than random policy

─ Discount factor (𝛾): Improvement over 𝛾=0 shows effective than only accounting immediate reward

60

Backup

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

0 0.01 0.05 0.1

(a) Learning Rate (b) Exploration Rate

0 0.5 0.9 1

(c) Discount Factor

S
p
e
e
d
u
p

0 0.05 0.1 0.2 1

cactuBSSN (SPEC)

0
.9

5

1

0.8

0.85

0.9

0.95

1

imagick deepsjeng bwaves roms cactuBSSN xz graph500 bfs pr AVG

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

IDT-DAMON IDT

Memory Access Monitoring Effectiveness

• Compare against applying DAMON[1]

─ Average history vector’s hamming distance of merge region: 8.13 (DAMON) → 5.15 (IDT)

61

Backup

[1] SeongJae Park. 2020. DAMON: Data Access Monitor. https://docs.kernel.org/mm/damon/index.html.

Predictive Region Promotion Effectiveness

• Compare against without PRP

62

Backup

0
.9

7
 1

0.8

0.85

0.9

0.95

1

imagick deepsjeng bwaves roms cactuBSSN xz graph500 bfs pr AVG

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

Without PRP IDT

Predictive Region Promotion Effectiveness (cont’d)

• Compare against without PRP

─ High PRP accuracy (ratio of region accessed that was promoted by PRP)

63

Backup

75.7
80.0

100.0
93.3

98.0

71.4 71.9

100.0
92.7

87.0

0

25

50

75

100

imagick deepsjeng bwaves roms cactuBSSN xz graph500 bfs pr AVG

P
R

P
 A

c
c
u
ra

c
y
 (

%
)

Two-tiered memory

• Performance on two-tiered memory configuration

─ Set DRAM 0 (Tier 0) and DRAM 1 (Tier 1) to 64GB and RSS to 96GB~110GB

─ Similar performance to AutoNUMA Tiering (MGRLU)

64

Backup

1
.0

0

1

0

0.25

0.5

0.75

1

1.25

imagick deepsjeng bwaves roms cactuBSSN xz graph500 bfs pr AVG

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

AutoNUMA Tiering (MGLRU) IDT

Sensitivity Study

• Smaller interval: Finer sampling and responsive demotion/promotion

─ but overhead increase

• Larger watermark: Reserve fast memory for potential allocation requests

─ but may not fully leverage the performance benefits of fast memory

65

Backup

 00 1,000 2,000 ,000

100

20

10

0.9

0.9

0.9

1.00

0.9

0.93

0.9

0.9

0.91

0.89

0.93

0.93

0.91

0.8

0.90

0.8

0.9

0.9

1

aggregate_interval (ms) demote_wmark (%)

c
r
i
t
i
c
a
l
_
w
m
a
r
k
(
%
)

(a) Intervals (b) Watermarks

s
a
m
p
l
e
_
i
n
t
e
r
v
a
l

(m
s
)

RL Pretraining

• Pre-trained using the Giga Update operations Per Second (GUPS) microbenchmark[1] with 100GB RSS

─ Uniform random access: Random access over the working set

─ Hot set: 90% of access on 4GB hot objects and the remaining uniform randomly

─ Dynamic hot set: Change hot objects every 150-second intervals.

66

Backup

[1] Amanda Raybuck et al.,.”HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM.”, SOSP 2021

Aggressive Demotion

• If available space < critical_wmark (Set to 1%)

• Tighten demotion candidate criteria

─ age > age_thres

─ access < (min_access + max_access) / 2

67

Backup

Misplaced Region Promotion

• IDT’s promotion may place region in suboptimal tier

• kswapd may demote in intensive memory usage

• Track by setting demoted flag when region is demoted

1. Detect misplaced region with demoted flag

2. Check upper-tier available space > critical_wmark

3. Promote

68

Backup

Region Reconfiguration Methods

• DAMON[1]

─ Merge if access frequency difference less than 10% of the maximum frequency across all regions

─ Split randomly

• MTM[2]

─ Merge if access frequency difference less than 1/3 of total scan counts

─ Split if two sampling page access status differ

69

Backup

[1] SeongJae Park. 2020. DAMON: Data Access Monitor. https://docs.kernel.org/mm/damon/index.html.

[2] Jie Ren et al., “MTM: Rethinking Memory Profiling and Migration for Multi-Tiered Large Memory Systems”, Eurosys 202Merge criteria is heuristic and requires magic number

https://docs.kernel.org/mm/damon/index.html

	Title
	슬라이드 1: IDT: Intelligent Data Placement for Multi-tiered Main Memory with Reinforcement Learning

	Background
	슬라이드 2: Tiered Memory Systems
	슬라이드 3: OS-level Tiered Memory Management
	슬라이드 4: OS-level Tiered Memory Management
	슬라이드 5: OS-level Tiered Memory Management
	슬라이드 6: Selecting Demotion Candidates: 2Q LRU and MGLRU
	슬라이드 7: Selecting Demotion Candidates: 2Q LRU and MGLRU
	슬라이드 8: Selecting Demotion Candidates: 2Q LRU and MGLRU
	슬라이드 9: Selecting Demotion Candidates: 2Q LRU and MGLRU
	슬라이드 10: Selecting Demotion Candidates: 2Q LRU and MGLRU
	슬라이드 11: Selecting Demotion Candidates: Using more precise standards
	슬라이드 12: Selecting Demotion Candidates: Using more precise standards
	슬라이드 13: Selecting Demotion Candidates: Using more precise standards
	슬라이드 14: Selecting Demotion Candidates: Using more precise standards
	슬라이드 15: Selecting Demotion Candidates: Using more precise standards
	슬라이드 16: ML for Demotion Policy
	슬라이드 17: ML for Demotion Policy
	슬라이드 18: ML for Demotion Policy
	슬라이드 19: ML for Demotion Policy
	슬라이드 20: ML for Demotion Policy
	슬라이드 21: ML for Demotion Policy

	IDT Overview
	슬라이드 22
	슬라이드 23: IDT: Overview

	Memory Access Monitoring
	슬라이드 24
	슬라이드 25: Region-granularity Monitoring
	슬라이드 26: Region-granularity Monitoring
	슬라이드 27: Region-granularity Monitoring
	슬라이드 28: Region Reconfiguration
	슬라이드 29: Region Reconfiguration
	슬라이드 30: Region Reconfiguration
	슬라이드 31: Region Reconfiguration: Merge
	슬라이드 32: Region Reconfiguration: Merge
	슬라이드 33: Region Reconfiguration: Merge
	슬라이드 34: Region Reconfiguration: Split

	RL
	슬라이드 35
	슬라이드 36: RL: Recall
	슬라이드 37: RL: Design
	슬라이드 38: RL: Design
	슬라이드 39: RL: Detail
	슬라이드 40: RL: Example
	슬라이드 41: RL: Execution Phases
	슬라이드 42: RL Execution Phases

	Demotion, Promotion
	슬라이드 43
	슬라이드 44: Demotion
	슬라이드 45: Promotion
	슬라이드 46: Promotion: ARP (Accessed Region Promotion)
	슬라이드 47: Promotion: PRP (Predictive Region Promotion)
	슬라이드 48: Promotion: PRP (Predictive Region Promotion)
	슬라이드 49: More Details in the Paper

	Result
	슬라이드 50
	슬라이드 51: Experimental Setup
	슬라이드 52: Performance
	슬라이드 53: Limitations
	슬라이드 54: Summary
	슬라이드 55: Summary
	슬라이드 56: Thank you!
	슬라이드 57: Thank you!

	Backup
	슬라이드 58
	슬라이드 59: RL Effectiveness
	슬라이드 60: RL Effectiveness (cont’d)
	슬라이드 61: Memory Access Monitoring Effectiveness
	슬라이드 62: Predictive Region Promotion Effectiveness
	슬라이드 63: Predictive Region Promotion Effectiveness (cont’d)
	슬라이드 64: Two-tiered memory
	슬라이드 65: Sensitivity Study
	슬라이드 66: RL Pretraining
	슬라이드 67: Aggressive Demotion
	슬라이드 68: Misplaced Region Promotion
	슬라이드 69: Region Reconfiguration Methods

